

Bernd Glück

SIMULATIONSMODELL "ERDWÄRMESONDEN"

zur wärmetechnischen Beurteilung von Wärmequellen, Wärmesenken und Wärme-/Kältespeichern

F+E TGA Prof. Dr.-Ing. habil. Bernd Glück, Goethestraße 18, D-08547 Jößnitz (Plauen) Tel.+Fax 03741 / 52 12 14 E-Mail B.GLUECK@t-online.de

Aufgrund der sehr guten Zusammenarbeit mit der RUD. OTTO MEYER-UMWELT-STIFTUNG wurde das vorliegende Simulationsmodell auch bei der Stiftung veröffentlicht.

Inhaltsverzeichnis

1	Einführung	1
2	Geometrische Modellierung des Simulationsbereiches	3
2.1	Gestaltung des Simulationsbereiches	3
2.2	Rechentechnische Darstellung des Simulationsbereiches	6
2.3	Wahl des Simulationsbereiches	7
	• Erdreichparameter	7
	• Betriebsweise	7
	• Sondenanordnung	8
	Generelle Anmerkung	9
3	Wärmetechnische Modellierung des Simulationsbereiches	10
3.1	Instationäre Wärmeleitung im Simulationsbereich und Randbedingungen	10
3.2	Wärmebilanz für ein Volumenelement	12
3.3	Neue Temperatur und Phase des Volumenelementes	14
3.4	Stabilitätskriterium für die numerische Berechnung	16
4	Wärmetechnische Modellierung der Bohrung	17
4.1	Bekannte Anwendung von Formfaktoren	18
4.2	Erweiterte Formfaktorenmethode	19
4.3	Algorithmus zur Bestimmung von Formfaktoren für Sondengeometrien	20
	• Gitterfestlegung	20
	Geometrie der wärmeübertragenden Flächen	21
	• Flächenkennzeichnung	21
	• Temperaturfüllung	21
	Berechnung der Wärmeströme in der Struktur	22
4.4	Formfaktoren für spezielle Erdwärmesonden	22
	Beispiele I	22
	Beispiele II	24
	Beispiele III	25
	Berücksichtigung der Exzentrität der Rohre im Bohrloch	26
	Hinweis auf mögliche Veränderung der Formfaktorendefinition	26
4.5	Rechenprogramm zur Bestimmung von Formfaktoren	26
4.6	Besonderheiten bei Verwendung der Formfaktoren im Simulationsprogramm	28
5	Wärmetechnische Modellierung des Rohrsystems	31
5.1	Zustands- und Stoffwerte der Durchflussmedien (Wasser, Tyfocor L)	31

5.2	Wärmeübergangskoeffizient für die Rohrströmung und Teilwärmedurchgangskoeffizient	33
5.3	Wärmetransport in den Rohren	36
6	Komplexmodell der Simulation von Erdwärmesonden	38
6.1	Festlegungen der Randbedingungen	38
	• Temperatur an der Erdoberfläche	38
	• Temperatur an der Sohle des Simulationsgebietes	40
	Flüssigkeitseintrittstemperatur und Sondenleistung	40
	• Sondendurchfluss	40
	Datenzusammenstellung für den Sondenbetrieb	40
6.2	Verknüpfung der Einzelalgorithmen zum Simulationsmodell	41
	Instationäre Simulation	41
	Stationäre Simulation	41
	Wärmebilanzen an den Rändern des Simulationsgebietes	42
	Speicherwärme im Simulationsgebiet	42
6.3	Programmablaufplan	43
6.4	Komplexprogramm zur Simulation der Erdwärmesonden	45
	• Hauptprogramm	45
	Hauptprogrammeingabe und Steuerung des Programmablaufes	46
	Eingabe zeitlich veränderlicher Flüssigkeitseintrittstemperaturen	48
	Eingabe zeitlich veränderlicher Sondenleistungen	49
	Eingabe zeitlich veränderlichen Durchflusses	50
	• Ausgaben (Druck- und Diagrammarten)	51
	Hinweise zur Diagrammgestaltung	55
7	Programminstallation und Hinweise zu Programmänderungen	57
	Grundlagen für die Programmanwendung	57
	Start der Rechenprogramme	57
	Bearbeitung der Programmlistings	58
8	Beispiele	59
8.1	Vorbemerkungen	59
	• Erdreichmodellierung	59
	Gestaltung der Erdwärmesonde	59
	Thermische Randbedingungen	60
	Wärmetechnische Sondenbelastung	61
8.2	Alleinige Heizwärmenutzung beim Sondenbetrieb (Beispiel 1)	62

III

8.3	Variationen der Simulationsannahmen am Beispiel 1				
	• Feinere Gitterteilung (Beispiel 1a)	73			
	• Größere Zeitschrittweite (Beispiel 1b)	74			
	• Tiefer liegende Sohle des Simulationsgebietes (Beispiel 1c)	74			
	• Größerer Einflussbereich des Simulationsgebietes (Beispiel 1d)	75			
	• Einfluss der Starttemperaturverteilung (Beispiel 1e)	77			
8.4	Langzeitsimulation über 50 Jahre	79			
8.5	Kombinierte Wärme-/Kältenutzung beim Sondenbetrieb (Beispiel 2)	80			
8.6	Testbeispiel zur weiteren Demonstration der Simulationsmöglichkeiten	86			
	Literaturverzeichnis	91			

1 Einführung

Ziel der Ausarbeitung ist die Schaffung und kostenlose Bereitstellung eines Simulationsmodells für Erdwärmesonden.

Die wärmetechnische Nutzung der Erdwärmesonden kann verschiedene energiesparende Lösungen befördern. Einsatzgebiete sind beispielsweise:

- Wärmequellen für Wärmepumpen
- Wärmesenken für Bauteilkühlungen
- Wärme-/Kältespeicher.

Die genannten, umfassenden Einsatzmöglichkeiten haben bemerkenswerte energetische Vorteile. So ist in den beiden ersten Fällen eine umweltschonende regenerative Energiequelle verfügbar.

Bei großflächigen Bauteilkühlungen kann die Temperatur des aus der Sonde austretenden Mediums über lange Zeiträume niedrig genug sein, um eine direkte Kühlung zu verwirklichen. Ansonsten kann die Sonde als günstige Wärmesenke für eine Kältemaschine dienen.

Besonders vorteilhaft ist es, dass die Nutzung der Erdwärmesonde unabhängig von der Tageszeit mit stets gleicher Effizienz möglich ist. Damit können im Kühlfall auch Raumkühlflächen ohne Speichereffekte, d. h. beispielsweise übliche Kühldecken, mit regenerativer Energie versorgt werden. Schließlich bietet der dritte Fall, die Erdwärmesonde als Wärmequelle und Wärmesenke gleichermaßen zu nutzen, die Möglichkeit, zeitweise anfallende Energie zwischenzuspeichern. Dies könnte im Idealfall eine ausgeglichene Wärmebilanz im Jahresgang liefern.

Der konstruktive Aufbau der Erdwärmesonden ist vielfältig. Die Hauptmerkmale sind:

- Einfachsonde (ein U-Rohr)
- Doppelsonde (zwei U-Rohre)
- Sondentiefe (z. B. 10 ... 200 m)
- ohne/mit Wärmedämmung der Rohre in Nähe der Erdoberfläche
- Durchmesser der Rohre und der Bohrung
- Lage der medienführenden Rohre im Bohrlochquerschnitt
- Bohrlochverfüllmaterial.

Im vorliegenden Simulationsmodell wird sich auf Varianten mit U-Rohren beschränkt, da sie den weitaus häufigsten Einbaufall verkörpern. Konzentrische Rohranordnungen von Vor- und Rücklauf sind seltener und erfordern höheren bautechnischen Aufwand, um eine gute thermische Ankopplung an das Erdreich zu realisieren.

Von besonderem Einfluss sind selbstverständlich auch die Erdreichparameter, wie beispielsweise:

- Temperatur des Erdreichs als Zeitfunktion
- Stoffwerte des Erdreichs (Dichte, Wärmeleitfähigkeit, spezifische Wärmekapazität)
- Eisbildung in Sondennähe
- Grundwassereinfluss als Zeitfunktion
- gegenseitige Beeinflussung im Sondenfeld.

Es sei darauf hingewiesen, dass über fließendes Grundwasser kaum verlässliche Daten erhältlich sind und der wärmetechnische Einfluss auf die Leistung der Erdwärmesonden demzufolge nur relativ ungenau modellierbar ist. Schließlich ist noch die Betriebsart der Erdwärmesonde bedeutungsvoll. Hier sind beispielhaft zu nennen:

- Durchflussmedium (Art der Sole, Wasser)
- Volumenstrom (turbulente oder laminare Strömung) als Zeitfunktion
- Leistungsanforderung oder Eintrittstemperatur als Zeitfunktion.

Die im Weiteren vorgestellte, völlige Neuentwicklung eines Simulationsmodells für die wärmetechnischen Gegebenheiten von Erdwärmesonden soll folgenden Ansprüchen genügen:

- genaue Darlegung der geometrischen und wärmetechnischen Modellierungen
- detaillierte Darstellung der Randbedingungen
- Algorithmus in Modulbauweise und Kennzeichnung der internen Schnittstellen
- vollkommene Offenlegung des Algorithmus einschließlich des Listings
- nachträgliche Ergänzungsmöglichkeiten für spezielle Einsatzbedingungen
- Kompromissfindung zwischen hoher Genauigkeit und kurzer Rechenzeit
- kostenfreie Nutzung des Simulationsmodells.

Damit können Erdwärmesonden unterschiedlichsten Aufbaus unter vielfältigsten thermischen sowie zeitlichen Randbedingungen untersucht werden. Mit Hilfe von Variantenvergleichen sind optimale Konstruktionen und/oder Betriebsbedingungen auffindbar.

An Beispielen werden die verschiedenen Einflüsse auf die Sondenleistung und deren Nachhaltigkeit demonstriert. Dabei wird die Komplexität der wärmetechnischen Vorgänge im Erdreich und im Bohrloch mit den Sondenrohren deutlich. Angaben über dauerhafte, konstante Entzugsleistungen – z. B. 50 W/m – sind nur unter bestimmten Randbedingungen realistisch.

Wichtige Hinweise:

Alle in diesem Bericht und dem zugehörigen Rechenprogramm enthaltenen Angaben, Daten, Berechnungsverfahren usw. wurden vom Autor mit bestem Wissen erstellt und sorgfältig geprüft. Dennoch sind inhaltliche Fehler nicht vollständig auszuschließen, deshalb erfolgen alle Angaben usw. ohne jegliche Verpflichtung und Garantie des Autors. Er übernimmt keinerlei Verantwortung und Haftung für etwaige inhaltliche Unrichtigkeiten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Autors unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen und Einspeicherung sowie Verarbeitung in elektronischen Systemen, die über die Eigennutzung hinausgehen, sowie für Übersetzungen und Mikroverfilmungen.

Das vorgestellte Simulationsmodell ist als Testfassung zu verstehen. Alle Interessierten sind eingeladen, an der Weiterentwicklung mitzuwirken.

Viel Erfolg bei der Anwendung!

2 Geometrische Modellierung des Simulationsbereiches

2.1 Gestaltung des Simulationsbereiches

Es wird ein Simulationsverfahren entwickelt, welches von jedermann flexibel an die spezielle Problematik anpassbar ist. Als vorteilhaft wird hierfür die Finite-Volumen-Methode erachtet, weil das mathematische Formulieren und das Verfolgen der instationären Wärmeleitung, der Energiespeicherung und ggf. auch des Phasenwandels bei Eisbildung besonders anschaulich erfolgen. Die wärmetechnischen Vorgänge im Bohrloch selbst werden dagegen quasistationär betrachtet und somit nicht in den instationär betrachteten Simulationsbereich einbezogen.

Unter der Annahme eines zu jeder Zeit τ rotationssymmetrischen Temperaturfeldes t(r, z, τ) um das Bohrloch ist bezüglich der Geometrie eine nur zweidimensionale Diskretisierung nötig, wodurch Rechenzeit eingespart werden kann. Somit besitzt der Simulationsbereich um die Sondenumgebung Zylinderform (Bilder 2.1 und 2.2), wobei die Zylinderachse mit der Bohrlochachse identisch ist. Die vertikalen Simulationsabschnitte i = 1 ... imax haben alle die gleiche Dicke Δh . Das Erdreich kann jedoch aus mehreren Stoffschichten bestehen. Die Volumenelemente werden generell als Kreisringe der Dicke Δh approximiert. Die Kreisringe k = 1 ... kmax beginnen mit dem Bohrlochdurchmesser r_{BL} als Innendurchmesser und enden mit dem wählbaren Außendurchmesser r_{EB}, der den zu betrachtenden Einflussbereich angibt (Bild 2.2). Die Wahl der Kreisringbreiten δ_k könnte nach verschiedenen Gesichtspunkten erfolgen. Im Bild 2.2 weisen sie beispielsweise gleiche Breite $\delta_{k=1...kmax}$ auf.

Die Durchmesser des Bohrlochdurchmessers 2 r_{BL} und des Simulationsgebietes 2 rEB sind größer dargestellt als im linken Bild!

Bild 2.2 Horizontaler Schnitt durch das Simulationsgebiet (Erdreichzylinder) mit aneinander grenzenden Kreisringen k = 1 ... kmax gleicher Breite δ_k (Mittelpunkte für Bohrloch und Kreisringe sind identisch)

rk stellt den mittleren Radius des Kreisringes k dar.

Bild 2.1 Vertikaler Schnitt durch das Simulationsgebiet in Form eines Erdreichzylinders mit unterschiedlichen horizontalen Schichten und mit Kennzeichnung der Simulationsabschnitte i = 1 ... imax Die Zylinderachse und die Sondenachse sind deckungsgleich.

÷

Für die in allgemeiner Form dargestellten Kreisringe k ist jeweils der mittlere Radius r_k repräsentativ, sodass sich der Kreisring von $r_k - \delta_k/2$ bis $r_k + \delta_k/2$ erstreckt. Damit hat das Volumenelement gemäß Bild 2.3 das Volumen

$$V_{k} = \pi \left[\left(r_{k} + \frac{\delta_{k}}{2} \right)^{2} - \left(r_{k} - \frac{\delta_{k}}{2} \right)^{2} \right] \Delta h = 2 \pi r_{k} \delta_{k} \Delta h.$$

$$Volumen-element$$

$$Volumen-element$$

$$Kreisring der Dicke \Delta h = Hohlzylinder) mit$$

$$Bild 2.3 Darstellung des Volumenelementes (Kreisring der Dicke \Delta h = Hohlzylinder) mit$$

Zunächst wurde daran gedacht, die Breite der Kreisringe von innen nach außen wachsen zu lassen, sodass am Bohrloch eine feine Diskretisierung vorliegt. Würde man als Bildungsgesetz vorgeben, dass die Kreisringbreite dem Radius proportional sein soll

dem mittleren Radius rk

 $\delta_k = \varepsilon r_k$

und passt man kmax Kreisringe lückenlos zwischen den vorgegebenen Radien r_{BL} und r_{EB} ein, so ergeben sich mit

$$\epsilon = 2 \frac{(r_{EB} / r_{BL})^{1/k \max} - 1}{(r_{EB} / r_{BL})^{1/k \max} + 1}$$

die Radienverhältnisse

$$\frac{r_{1}}{r_{BL}} = \frac{1}{1 - \epsilon/2}; \qquad \frac{r_{k+1}}{r_{k}} = \frac{1 + \epsilon/2}{1 - \epsilon/2} \text{ (geometrische Folge)}; \qquad \frac{r_{EB}}{r_{k \max}} = \frac{1 + \epsilon/2}{1}$$

Für den Bohrlochradius $r_{BL} = 75$ mm, den Radius des Einflussbereiches $r_{EB} = 5$ m und kmax = 20 Unterteilungen folgen mit den abgeleiteten Berechnungsgleichungen die im Bild 2.4 dargestellten Verhältnisse.

Bild 2.4 Radien zwischen Bohrloch $r_{BL} = 0,075m$ und dem Ende des Einflussbereiches $r_{EB} = 5m$ gemäß Berechnung (blaue Linien) oben: lineare Achsteilung unten: logarithmische Achsteilung

Die Darstellung mit logarithmischer Achsteilung zeigt sofort die geometrische Radienabstufung. Aber die lineare Achsteilung verdeutlicht die zu feine Gitterunterteilung in Nähe des Bohrloches. Deshalb wird die geometrische Radienteilung verworfen, obwohl sie den bestechenden wärmetechnischen Vorteil besitzt, dass alle Wärmeströme in radialer Richtung mit einer Konstanten K und der Temperaturdifferenz gebildet werden können:

$$\dot{Q}_{k} = 2\pi\lambda\Delta h \frac{\Delta t}{\ln\frac{r_{k}}{r_{k-1}}} = K \Delta t.$$

Die weitere Überlegung analysiert die Besonderheiten des zweidimensionalen Wärmestromes (Bild 2.5). Er wird beispielsweise längs der Sonde – bevorzugt natürlich im mittleren Sondenabschnitt – radial ausgerichtet sein. In der Erdschicht zwischen der Sohle des Simulationsgebietes und dem unteren Ende der Sonde erfolgt vorwiegend ein vertikaler Wärmestrom. Bereiche mit ausgeprägter zweidimensionaler Wärmeleitung existieren am Sondenfuß und am Sondenkopf.

Bild 2.5 Stark vereinfachte Darstellung der bevorzugten Wärmeleitung im Erdreich

Ringelemente nach Bild 2.3 mit geringer Breite δ_k und großer Höhe Δh haben einen geringen Wärmeleitwiderstand in radialer Richtung aber einen großen in vertikaler Richtung, wodurch die elementweise bestimmte Temperaturverteilung in diesem Gebiet ein "verzerrtes" Bild ergibt. Deshalb wird bei der Gittermodellierung die Gleichheit der Wärmeleitwiderstände in beide Richtungen angestrebt. Betrachtet man losgelöst voneinander die Wärmeleitung innerhalb des Volumenelementes mit der im Bild 2.3 gezeigten Geometrie, so folgen bei jeweils gleicher Temperaturdifferenz Δt zwischen den gegenüberliegenden Oberflächen in vertikaler und in radialer Richtung

$$\dot{Q}_{\text{vertikal}} = 2\pi\lambda r_k \,\delta_k \frac{\Delta t}{\Delta h} \qquad (2.2) \qquad \dot{Q}_{\text{radial}} = 2\pi\lambda\Delta h \frac{\Delta t}{\ln\frac{r_k + \delta_k/2}{r_k - \delta_k/2}} \,. \tag{2.3}$$

Setzt man beide Wärmeströme gleich, so folgt:

$$r_k \,\delta_k \,\ln \frac{r_k + \delta_k/2}{r_k - \delta_k/2} = \Delta h^2.$$
(2.4)

Ersetzt man den Logarithmus durch das erste Glied der nachfolgenden Reihe

$$\ln \frac{r_{k} + \delta_{k}/2}{r_{k} - \delta_{k}/2} = \ln \frac{1 + \frac{\delta_{k}}{2r_{k}}}{1 - \frac{\delta_{k}}{2r_{k}}} \approx 2 \frac{\delta_{k}}{2r_{k}} + \frac{2}{3} \left(\frac{\delta_{k}}{2r_{k}}\right)^{3} + \dots$$
(2.5)

ergibt sich infolge der Linearisierung die erwartete, einfache Forderung

 $\delta_k \approx \Delta h.$

(2.6)

Für die Gittergenerierung sollten imax und kmax entsprechend gewählt werden. Somit gilt im Weiteren:

$$\delta = \delta_{k=1\dots kmax} = \text{const.}$$
(2.7)

2.2 Rechentechnische Darstellung des Simulationsbereiches

Die Bilder 2.1 und 2.2 zeigen das darzustellende zylindrische Simulationsgebiet mit dem r, z-Koordinatensystem. Für die rechentechnische Abarbeitung wird dafür ebenfalls ein zweidimensionales Gitter in zylindrischer Form mit den Zählvariablen i und k verwendet (Bild 2.6), woraus schließlich das Gitter in einer r,z-Ebene entwickelt wird (Bild 2.7).

Die Volumenelemente stellen in der Horizontale liegende Kreisringe gemäß Bild 2.3 mit den mittleren Radien r_k dar. Die Anzahl der Unterteilungen kmax ist dabei ein wählbarer Vorgabewert. Es folgen:

$$\delta = \frac{\mathbf{r}_{\rm EB} - \mathbf{r}_{\rm BL}}{k\,\mathrm{max}} \tag{2.8}$$

$$r_{k} = r_{BL} + (k - 0.5) \delta$$
(2.9)

Die vertikalen Abstände Δh sind über die vorgegebene Länge des Simulationsgebietes L_{Sim} konstant. Damit ergibt sich für den Vorgabewert imax:

$$\Delta h = \frac{L_{\rm Sim}}{\rm i\,max}\,.$$
(2.10)

Die Mitte des Volumenelementes gemäß der Bilder 2.3 und 2.6 liegt in einer Tiefe von

 $z_i = (i - 0,5) \Delta h$ (2.11)

unter der Erdoberfläche. Das Volumen ist nach Gl. (2.1) berechenbar.

Die im Bild 2.1 dargestellten Schichtdicken, für die unterschiedliche Erdreichparameter gelten, werden den ganzzahligen i zugeordnet, d. h. gegebenenfalls "angepasst". Der damit eventuell verbundene Fehler ist gering, da die Schichtgrenzen in der Regel ohnehin nicht scharf definiert sind.

Die Sondenlänge L_{Sonde} und die Länge des Simulationsgebietes L_{Sim} sollten so gewählt werden, dass sie durch Δ h ganzzahlig teilbar sind. Gleiches gilt für Sonderfälle der Sondengestaltung, so beispielsweise wenn eine bestimmte Länge eines Sondenrohres unter der Erdoberfläche gedämmt wird.

2.3 Wahl des Simulationsbereiches

Trivial formuliert sollte das zu untersuchende Simulationsgebiet so groß gewählt werden, dass an seinen Rändern eindeutige wärmetechnische Randbedingungen definierbar sind. Aber dies ist eben sehr häufig nicht gegeben und Approximationen sind oftmals unsicher. Nachfolgende Hinweise sollen die verschiedenartigen Einflüsse verdeutlichen und Hilfestellungen geben:

• Erdreichparameter

Die Stoffwerte Wärmeleitfähigkeit λ , Dichte ρ und spezifische Wärmekapazität c nehmen auf die Fortpflanzung einer Temperaturänderung Einfluss. Sie ist linear von der Temperaturleitfähigkeit a = $\lambda / (\rho c)$ abhängig. Dies bedeutet grundsätzlich: Je größer a ist, umso größer sollte auch der Simulationsbereich gewählt werden.

• Betriebsweise

Ideal sind Erdwärmesonden, die über einen bestimmten Zeitraum – in der Regel über ein Jahr – eine ausgeglichene Wärmebilanz (|Wärmeentzug| \approx |Wärmezufuhr|) aufweisen. Dies ist beispielsweise gegeben, wenn die Sonden im Winter als Wärmequelle und im Sommer als Wärmesenke dienen. Dieser Betrieb wird zunehmend bei Erdwärmesonden mit geringer Tiefe realisiert. Die radiale Ausbreitung der betriebsbedingten, periodischen Temperaturänderung ist dann begrenzt und unterliegt dem Jahresrhythmus. Hierbei wirken maßgeblich die Wärmeströme von und zur Sonde sowie der Wärmeaustausch mit der Erdreichoberfläche und eventuell mit einer vorhandenen Grundwasserströmung. Das System ist nach ca. zwei bis drei Jahren eingeschwungen. Völlig anders verhalten sich Einzelsonden, die z. B. nur für den Wärmentzug im Winter genutzt werden. Das thermisch beeinflusste Gebiet vergrößert sich von Jahr zu Jahr, wobei sich im oberen Speicherbereich die merkbare radiale Ausdehnung langfristig asymptotisch einem Endzustand nähert. Der Wärmestrom von der Erdoberfläche führt somit im oberen Speicherbereich zu einer gleichmäßigen Jahresschwingung. Die jahreszeitlich bedingten Temperaturschwankungen an der Erdoberfläche wirken je nach Stoffwerten der Erdschichten etwa 10 bis 15 m tief.

Es sei angemerkt, dass Erdwärmekollektoren in etwa 1,2 m Tiefe durch den starken Einfluss des Wärmeaustausches mit der Erdoberfläche in der Regel bereits nach zwei Jahren einen eingeschwungenen Zustand erreicht haben [9].

• Sondenanordnung

Meistens werden aufgrund der gegebenen Platzverhältnisse die Sonden in Feldern angeordnet. Platzsparend ist ein Raster mit gleichseitigen Dreiecken der Seitenlängen a (Bild 2.8).

Formal betrachtet berühren sich die kreisförmigen Einflussbereiche, sodass sich die Radien $r_{EB} = a/2$ ergeben. Bei der wärmetechnischen Simulation werde dann angenommen, dass der durch r_{EB} gebildete Zylindermantel eine adiabate Fläche bildet. Dadurch sind die im Bild 2.8 dargestellten hellgrünen Restflächen nicht mit in die Simulation einbezogen. Ausgehend von der Dreiecksfläche

$$A_{\Delta} = \frac{\sqrt{3}}{4}a^2 \tag{2.12}$$

Bild 2.8 Draufsicht auf den Ausschnitt eines Sondenfeldes (Dreiecksteilung) Die Erdwärmesonden mit dem Bohrlochradius r_{BL} und dem simulierten Einflussbereichsradius r_{EB} befinden sich jeweils an den Eckpunkten eines gleichseitigen Dreiecks. Der fiktive Radius r_{EB}^* integriert die Restfläche A in den Simulationsbereich.

und der innerhalb eines Dreieckes liegenden Einzugsbereichsflächen der Sonden

$$A_{\rm EB} = \frac{\pi}{8}a^2 \tag{2.13}$$

folgt die Restfläche

$$A = \left(\frac{\sqrt{3}}{4} - \frac{\pi}{8}\right)a^2.$$
 (2.14)

Prozentual stellt die Restfläche 9,3 % der verfügbaren Dreiecksfläche A_{Δ} dar. In der Realität nimmt die Fläche A selbstverständlich am instationären Wärmeleitvorgang im Erdreich teil, aufgrund der großen Entfernung zu den nächstgelegenen Sonden ist ihr Anteil jedoch klein. Eine pauschale Erfas-

sung der Fläche A in den Simulationsbereich ist durch einen fiktiven Radius möglich:

$$r_{EB}^* = \frac{\sqrt[4]{3}}{\sqrt{2\pi}} a = 0,525 a.$$
 (2.15)

Dieser Radius ist im Bild 2.8 vermerkt.

In selteneren Fällen erfolgt die Anordnung der Erdwärmesonden nach einem quadratischen Raster (Bild 2.9).

Bild 2.9 Draufsicht auf den Ausschnitt eines Sondenfeldes (Quadratteilung) Die Erdwärmesonden mit dem Bohrlochradius r_{BL} und dem simulierten Einflussbereichsradius r_{EB} befinden sich jeweils an den Eckpunkten eines Quadrates.

Der fiktive Radius r_{EB}^* integriert die Restfläche A in den Simulationsbereich.

Wollte man die Fläche A in den Simulationsbereich einbeziehen, ist der fiktive Radius zu wählen:

$$r_{EB}^* = \frac{1}{\sqrt{\pi}} a = 0,564 a.$$
 (2.16)

Sehr unsicher ist die Wahl des Simulationsbereiches für Einzelsonden, weil der Einflussbereich stark von der Betriebsweise geprägt ist.

• Generelle Anmerkungen

Ist der Simulationsbereich zu klein gewählt, so liegt man auf der sicheren Seite, da in Wirklichkeit ein größeres Wärmereservoir verfügbar ist.

Das zu entwickelnde Rechenprogramm kann im Zweifelsfall selbstverständlich mit unterschiedlichen Radien für den Einflussbereich gestartet werden, um die anfänglich getroffene Festlegung von r_{EB} zu kontrollieren.

3 Wärmetechnische Modellierung des Simulationsbereiches

3.1 Instationäre Wärmeleitung im Simulationsbereich und Randbedingungen

Es ist die FOURIERsche Differenzialgleichung in zweidimensionaler Form mit einer Phasenwandlung für den homogenen, isotropen Körper bei vorgegebenen Anfangs- und Randbedingungen zu lösen. Die bekannte Differenzialgleichung für Zylinderkoordinaten ohne Beachten einer Winkelabhängigkeit lautet

$$\frac{\partial t}{\partial \tau} = a \left(\frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r^2} + \frac{\partial^2 t}{\partial z^2} \right) + \frac{\dot{q}_E}{\rho c}$$
(3.1)

mit der Temperaturleitfähigkeit

$$a = \frac{\lambda}{\rho c}$$
(3.2)

λ

ρ

с

Wärmeleitfähigkeit

spezifische Wärmekapazität.

Dichte

und den Einzelgrößen

t Temperatur

r, z Ortskoordinaten

τ Zeit

 \dot{q}_E Quellenergiebigkeit (Leistung pro Volumeneinheit)

Der Erdstoff verkörpert in der Regel ein sensibel speicherndes Material. Dies gilt für den Trockenzustand und auch für Erdreich mit flüssigem oder gefrorenem Wasseranteil außerhalb der Phasenwandeltemperatur (> 0 °C oder < 0 °C). Während des Phasenwandels besitzt das Erdstoff-Wasser-Gemisch allerdings Latentspeichereigenschaften. Hierbei wird von einer homogenen Mischung mit gemittelten, jedoch konstanten Stoffwerten ausgegangen. Generell kann der Speicherkörper aus maximal acht unterschiedlichen Horizontalschichten (Schmax) bestehen (im Bild 2.1 existieren z. B. Schmax = 3 Schichten). Tiefe Erdwärmesonden arbeiten bei relativ hohen Temperaturen, sodass keine Eisbildung auftritt. Bei kurzen Sonden ist die Eisbildung in Erdoberflächennähe aber möglich, sodass generell der Phasenwandel in das Simulationsmodell einbezogen wird. Die durch die Phasenumwandlung bedingte latente Wärme wird als innere Wärmequelle oder -senke – wie in Gl. (3.1) bereits enthalten – dargestellt.

Die instationäre Wärmeleitung gemäß Gl. (3.1) wird näherungsweise durch Aneinanderreihung von quasistationären Wärmeleitvorgängen, die jeweils für den Zeitraum $\Delta \tau$ gelten, verfolgt. Als geeignetes numerisches Lösungsverfahren wurde die Finite-Volumen-Methode ausgewählt, wobei die Volumenelemente jeweils Hohlzylinder der Höhe Δh (Bilder 2.1 bis 2.3) verkörpern. Die Wärmeleitvorgänge zwischen den Volumenelementen und an den Rändern des Simulationsbereiches sind sehr anschaulich darstellbar. Für jedes Volumenelement wird pro Zeitschritt eine Wärmebilanz aufgestellt, d. h., alle Wärmeströme über die Elementoberflächen werden erfasst. Ist die Summe der Wärmeströme QE ungleich Null, liegt ein instationärer Wärmespeichervorgang vor. Die Temperatur- und die Phasenänderung im Element sind aus den Vorgängerwerten zu bestimmen. D. h., es kommt ein explizites Verfahren zur Anwendung.

Das Temperaturfeld im Simulationsgebiet (vgl. Bild 2.7) wird durch die Temperaturen der Volumenelemente an den Gitterpunkten definiert:

t_{i,k} Temperatur zu Beginn eines Zeitschrittes

 $\begin{array}{ll} tn_{i,k} & \mbox{Temperatur am Ende eines Zeitschrittes (n bedeutet "neu").} \\ Nach Abarbeitung eines Zeitschrittes erfolgt das Umspeichern der Temperaturen \\ t_{i,k} = tn_{i,k}. \end{array}$

Die Simulation beginnt stets mit einer Starttemperaturverteilung, die aus der vorgegebenen Temperatur an der Sohle des Simulationsgebietes $t_{Erdsohle}$ und dem vertikalen Temperaturgradienten 0,03 K/m mit $t_{Start,oben} = t_{Erdsohle} - 0,03$ L_{Sim} höhenabhängig für alle Volumenelemente gebildet wird: $t_{i,k=1,..,kmax} = t_{Start,oben} + (i - 0,5) 0,03 \Delta h.$ (3.4)

Alle Starttemperaturen $t_{i,k}$ sollten wegen der Besonderheiten beim Phasenwechsel stets unter oder oberhalb von 0 °C liegen.

Da der Erdstoff als ein homogenes Erde-Wasser-Gemisch modelliert wird, der die Wärme sensibel und latent speichern kann, ist zusätzlich zum Temperaturfeld auch der Phasenzustand für jedes Volumenelement i, k zu vermerken:

Phase_{i,k} Phasenzustand (geschmolzener Anteil) des Erdstoffs

Phase_{i,k} = 0 Wasser vollkommen gefroren; "fester" Erdstoff

Phase_{i,k} = 1 Wasser vollkommen geschmolzen; "flüssiger" Erdstoff.

Die Phasenwandelenthalpie des anteiligen Wassers wird vereinfacht auf die Gemischmasse bezogen.

Hinweis: Wird eine Simulation fortgesetzt, so können auch bereits vorhandene Temperatur- und Phasenfelder, die für alle Volumenelemente gespeichert wurden, geladen werden.

Die Stoffwerte sind schichtweise anzugeben. Es gelten:

ρ Dichte (Volumenänderung bei der Eisbildung bleibt unbeachtet)

rS Phasenwandelenthalpie.

Die Stoffdaten für Temperaturen unterhalb 0 °C lauten:

 λ Wärmeleitfähigkeit des erstarrten ("festen") Materials

c spezifische Wärmekapazität des erstarrten ("festen") Materials.

Analog gelten für Temperaturen oberhalb 0 °C:

λfl Wärmeleitfähigkeit des geschmolzenen ("flüssigen") Materials

cfl spezifische Wärmekapazität des geschmolzenen ("flüssigen") Materials.

Hinweis: Die genannten Größen sind im Anwendungsfall schichtweise vorzugeben ($\rho(Sch)$, $\lambda(Sch)$ usw.) und den entsprechenden Volumenelementen i, k zuzuweisen.

Mit Kenntnis des Phasenzustandes kann durch einfache Wichtung die Wärmeleitfähigkeit des Latentspeichermaterials näherungsweise bestimmt werden. Für die aktuellen Feldgrößen gelten dann: λ Feld_{i,k} = $\lambda_{i,k}$ (1 – Phase_{i,k}) + λ fl_{i,k} Phase_{i,k}. (3.5)

Die wärmetechnischen Randbedingungen an den Grenzen des Simulationsgebietes sind eindeutig definiert. Sie werden durch Bild 3.1 veranschaulicht.

Das Bohrloch mit seiner Verrohrung stellt keine innere Wärmequelle im Speicherkörper dar, es ist vom Speicherbereich ausgespart. Somit wird die Bohrlochwandtemperatur $t_{BL,i}$ als Randbedingung erster Art am inneren Simulationsbereich definiert. Sie gilt für den Abschnitt i während des Zeitschrittes $\Delta \tau$.

Der Zylindermantel des Simulationsbereiches wird als adiabate Wandung aufgefasst.

(3.3)

An der Erdoberfläche wirken die von der Ortslage und der Zeit abhängigen meteorologischen Elemente Lufttemperatur und Sonnenstrahlung, die man zweckmäßigerweise zur Sonnenlufttemperatur (Außentemperatur) t_a zusammenfasst. Es wird empfohlen, hierfür die Daten des Testreferenzjahres TRY nach DIN 4710 zu verwenden. Unter Annahme eines vordefinierten Wärmeübergangskoeffizienten α_a ist eine Randbedingung dritter Art anzusetzen.

An der Sohle des Simulationsbereiches wird eine Randbedingung erster Art angenommen, d. h. eine Temperatur t_{Erdsohle} vorgegeben. Sie wäre grundsätzlich auch als Zeitfunktion darstellbar. Falls sich eine Grundwasser führende Schicht am unteren Sondenende befindet, ist die Wassertemperatur maßgebend. Ist dies nicht der Fall, dann sollte die Länge des Simulationsbereiches bedeutend größer als die Sondenlänge gewählt und dort die Temperatur des ungestörten Erdreiches angesetzt werden.

Die fiktive Bohrlochverlängerung unterhalb der eigentlichen Sondenverrohrung wird der Einfachheit halber vom Simulationsgebiet ausgenommen. Bei einem Bohrlochradius $r_{BL} = 0,075$ m und einem Gebietsradius $r_{EB} = 5$ m bedeutet die Vernachlässigung nur ca. 0,02 %. Die Ränder der fiktiven Bohrlochverlängerung werden aus Symmetriegründen als adiabat betrachtet.

Bild 3.1 Wärmetechnische Randbedingungen für das Simulationsgebiet

Es umfasst einen Hohlzylinder mit der Länge L_{Sim} , dem Außenradius r_{EB} als Ende des Einflussbereiches und dem Bohrlochdurchmesser r_{BL} . Bei $L_{Sim} > L_{Sonde}$ gehört die scheinbare Bohrlochverlängerung nicht zum Simulationsbereich.

Bei unsicheren Annahmen bezüglich der Größe des Simulationsgebietes und der Randbedingungen wird empfohlen, diese zu variieren und die Simulationsergebnisse gegenüberstellend zu bewerten.

3.2 Wärmebilanz für ein Volumenelement

Im Bild 3.2 ist ein Volumenelement im Gitternetz an der Stelle i, k mit den Nachbarelementen als Schnittdarstellung gezeigt. Zusätzlich sind die durch die Elementoberflächen tretenden Wärmeströme dargestellt. Sie folgen aus dem FOURIERschen Erfahrungsgesetz der Wärmeleitung

$$\dot{\mathbf{Q}} = \lambda \frac{\mathrm{dt}}{\mathrm{dn}} \mathbf{A}$$

mit

λ Wärmeleitfähigkeit

A Fläche, in der die Isothermenfläche t liegt

dt/dn Temperaturgradient.

Zusätzlich sind die ein- und austretenden Wärmeströme in und aus dem Volumenelement i, k durch Wärmeleitung vermerkt.

Während der Temperaturgradient in der axialen i-Richtung sofort ersichtlich ist, folgt der in radialer k-Richtung aus der LAPLACEschen Differenzialgleichung

$$\frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r^2} = 0.$$
(3.7)

Schließlich können ableitend von Bild 3.2 die vier Wärmeströme angeschrieben werden:

$$\dot{Q}_{k,ein} = 2\pi \frac{\lambda \text{Feld}_{i,k-1} + \lambda \text{Feld}_{i,k}}{2} \Delta h \frac{t_{i,k-1} - t_{i,k}}{\ln \frac{r_k}{r_{k-1}}}$$
(3.8)

$$\dot{Q}_{i,ein} = 2\pi r_k \delta \frac{\lambda Feld_{i-1,k} + \lambda Feld_{i,k}}{2} \frac{t_{i-1,k} - t_{i,k}}{\Delta h}$$
(3.10)

$$\dot{Q}_{i,aus} = 2\pi r_k \delta \frac{\lambda Feld_{i,k} + \lambda Feld_{i+1,k}}{2} \frac{t_{i,k} - t_{i+1,k}}{\Delta h}.$$
(3.11)

Des Weiteren sind noch einige Sonderfälle zu beachten, um die Randbedingungen nach Bild 3.1 zu erfüllen.

(3.6)

Am Bohrloch k = 1 gilt die Temperatur $t_{BL,i}$ und damit der eintretende Wärmestrom

$$\dot{Q}_{k=1,ein} = 2\pi \lambda \text{Feld}_{i,1} \Delta h \frac{t_{\text{BL},i} - t_{i,k=1}}{\ln \frac{r_k}{r_{\text{BL}}}}.$$
(3.12)

An der fiktiven Bohrlochverlängerung k = 1 strömt keine Wärme ein:

$$\dot{Q}_{k=1,ein} = 0.$$
 (3.13)

Am Ende des Einflussbereiches r_{EB} (Zylindermantel) gilt k = kmax. Es tritt keine Wärme aus: $\dot{Q}_{k=k \max,aus} = 0.$ (3.14)

An der Erdreichoberfläche gilt mit der Sonnenlufttemperatur als Außentemperatur t_a und dem äußeren Wärmeübergangskoeffizienten α_a der eintretende Wärmestrom

$$\dot{Q}_{i,ein} = 2\pi r_k \delta \left(\frac{1}{\alpha_a} + \frac{\Delta h}{2\lambda Feld_{i,k}} \right)^{-1} (t_a - t_{i,k}).$$
(3.15)

An der Sohle des Simulationsgebietes soll von einer konstanten Temperatur $t_{Erdsohle}$ (= Temperatur des ungestörten Erdreiches in dieser Tiefe) ausgegangen werden, sodass für den austretenden Wärmestrom gilt

$$\dot{Q}_{i,aus} = 4\pi r_k \,\delta \,\lambda \text{Feld}_{i,k} \,\frac{t_{i,k} - t_{\text{Erdsohle}}}{\Delta h} \,. \tag{3.16}$$

Schließlich ergibt sich die Wärmezufuhr an das Volumenelement während des betrachteten Zeitintervalls $\Delta \tau$ zu:

$$QE = \left(\dot{Q}_{i,ein} + \dot{Q}_{k,ein} - \dot{Q}_{i,aus} - \dot{Q}_{k,aus}\right)\Delta\tau.$$
(3.17)

3.3 Neue Temperatur und Phase des Volumenelementes

Zur rationellen Berechnung ist es zweckmäßig, elementbezogene Größen zu definieren:

$m_{E,k}$	Masse des Volumenelementes (Elementmasse)	$m_{E,k} = V_k \rho (V_k \text{ nach Gl. } (2.1))$
Q _{Phase,k}	Phasenumwandlungswärme für die Elementmasse	$Q_{\text{Phase},k} = m_{\text{E},k} r \mathbf{S}$
$C_{E,k}$	Elementwärmekapazität des erstarrten Erdstoffs	$C_{E,k} = c m_{E,k}$
C _{Efl k}	Elementwärmekapazität des geschmolzenen Erdstoffs	$C_{Efl k} = c_{fl} m_{Ek}$

Erfolgt kein Phasenwandel, so kann die Temperaturänderung im Volumenelement am Ende des Zeitschrittes $\Delta \tau$ berechnet werden. Mit der Wärmekapazität des Volumenelementes gilt für die Temperaturänderung

bei fester Phase (<0 °C)
$$\Delta t = \frac{QE}{C_{E,k}}$$
 bzw. bei flüssiger Phase (>0 °C) $\Delta t = \frac{QE}{C_{Efl,k}}$, (3.18)
woraus die neue Temperatur folgt:

$$tn_{i,k} = t_{i,k} + \Delta t. \tag{3.19}$$

Liegt zwischen $tn_{i,k}$ und $t_{i,k}$ die Schmelztemperatur 0 °C, ist der Phasenwandel – differenziert nach Aufheizen oder Abkühlen – zu beachten. In [1] ist ein Algorithmus dargelegt, der auch einen Phasenwandelbereich und eine Hysterese beinhaltet. Diese Varianten entfallen beim Idealfall Wasser /

Eis, sodass der temperaturabhängige Verlauf der spezifischen Enthalpie h(t) gemäß Bild 3.3 gilt. Lineare Anstiege dh/dt = c im festen Stoff und dh/dt = c_{fl} im flüssigen Stoff sowie der Sprung bei 0 °C sind kennzeichnend. Somit stellt h eine Funktion der Temperatur und des Phasenzustandes dar: h = h(t, Phase). (3.20)

Bild 3.3 Verlauf der spezifischen Enthalpie h(t, Phase) in Abhängigkeit der Stofftemperatur t und des Phasenzustandes Phase bei Wasser / Eis

Zur rechnerischen Verfolgung der Temperatur- und Phasenänderung ist der im Bild 3.4 vorgestellte Rechenablauf nutzbar. Er berücksichtigt die Zustandsänderungen, die von allen real möglichen Punkten A bis E ausgehen und deren Wärmeeintrag in das Volumenelement i, k positiv oder negativ ist (QE > 0, QE = 0, QE < 0). Dabei gilt $|QE| = 0 \dots > QP$ hase, sodass der komplette Phasenwandel von "fest" bis "flüssig" oder umgekehrt verfolgt werden kann.

```
'Übergabe der vorhandenen Feldgrößen
tE = t(i,k)
PH = Phase(i,k)
 'Ermittlung der neuen Temperatur ohne Beachten des Phasenwandels
 OER = 0 'OER bedeutet Restwärme im Element
If tE \leq 0 And PH = 0 Then
    tneu = tE + QE / CE
    If tneu >= 0 Then QER = QE + CE * tE
ElseIf tE \geq= 0 And PH = 1 Then
    tneu = tE + QE / CEfl
    If tneu <= 0 Then QER = QE + CEfl * tE</pre>
Else
    QER = QE : tneu = tE
End If
'Phasenwandel
If PH < 1 And QER > 0 Then
    'Aufheizfall
    If QER < (1 - PH) * QPhase Then
        PH = PH + QER / QPhase
        tneu = 0
    Else
        tneu = (QER - (1 - PH) * QPhase) / CEfl
        PH = 1
    End If
ElseIf PH > 0 And QER < 0 Then
    'Abkühlfall
    If Math.Abs(QER) < PH * QPhase Then
        PH = PH + QER / QPhase
        tneu = 0
    Else
        tneu = (QER + PH * QPhase) / CE
        PH = 0
    End If
End If
'Rückgabe der ermittelten Werte als neue Feldgrößen
tn(i,k) = tneu
                       Bild 3.4 Algorithmus zur Berechnung der thermodynamischen Zu-
Phase(i,k) = PH
                       standsänderung für ein Erde-Wasser-Gemisch mit der Phasenwan-
                       deltemperatur 0 °C (vgl. auch Bild 3.3)
```

Im Ergebnis des Phasenwandels gelten die neuen Elementgrößen: tni,j,k; Phasei,j,k.

3.4 Stabilitätskriterium für die numerische Berechnung

In [2] sind Definitionen zur Stabilität und Konvergenz ausführlich dargestellt. Im vorliegenden Fall wird rein pragmatisch vorgegangen. Um die Rechenzeiten zu verringern, ist man bestrebt, mit großen Zeitschritten $\Delta \tau$ zu arbeiten. Das Ergebnis wird dann logischerweise ungenauer, da man die Ausgangsgrößen und Randbedingungen über diesen Zeitraum als konstant betrachtet. Sind die Zeitschritte zu groß gewählt, kann das Ergebnis sogar falsch werden. Die logischen Grenzen der möglichen Temperaturänderungen sind durch den zweiten Hauptsatz der Thermodynamik gegeben. So kann die neue Temperatur eines Elementes z. B. nicht durch Wärmeaufnahme aus einer Umgebung niedrigerer Temperatur hervorgehen und umgekehrt. Für Verfahren, die rein explizit im Zeitschritt arbeiten und die ein rechtwinkliges Gitter x, y, z verwenden, gilt aus Stabilitätsgründen die bekannte Beschränkung für den Zeitschritt:

$$\Delta \tau \leq \frac{1}{2a\left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2}\right)}.$$
(3.21)

Im Weiteren wird eine analoge Beziehung für das vorgestellte Gitter abgeleitet. Ausgehend von Gl. (3.17) und der Substitution der Gln. (3.8) bis (3.11) ergibt sich durch Gleichsetzen mit einer Modifikation der Gl. (3.18):

$$\left[2\pi\lambda\Delta h \frac{t_{i,k-1} - t_{i,k}}{\ln\frac{r_k}{r_{k-1}}} - 2\pi\lambda\Delta h \frac{t_{i,k} - t_{i,k+1}}{\ln\frac{r_{k+1}}{r_k}} + 2\pi r_k \delta\lambda \frac{t_{i-1,k} - t_{i,k}}{\Delta h} - 2\pi r_k \delta\lambda \frac{t_{i,k} - t_{i+1,k}}{\Delta h} \right] \Delta\tau$$

$$= 2\pi r_k \delta\Delta h \rho c (tn_{i,k} - t_{i,k}).$$

$$(3.22)$$

Unter Beachten der Gl. (3.2) folgt:

$$tn_{i,k} = a \Delta \tau \left\{ \frac{t_{i,k-1}}{r_k \,\delta \,\ln \frac{r_k}{r_{k-1}}} + \frac{t_{i,k+1}}{r_k \,\delta \,\ln \frac{r_{k+1}}{r_k}} + \frac{t_{i-1,k} + t_{i+1,k}}{\Delta h^2} \right\} + \left\{ 1 - a \Delta \tau \left\{ \frac{1}{r_k \,\delta \,\ln \frac{r_k}{r_{k-1}}} + \frac{1}{r_k \,\delta \,\ln \frac{r_{k+1}}{r_k}} + \frac{2}{\Delta h^2} \right\} \right\} t_{i,k}.$$

$$(3.23)$$

ſ

Der erste Summand ist positiv. Der zweite Summand muss auch positiv oder null sein, ansonsten würde mit steigender Ausgangstemperatur $t_{i,k}$ die neue Elementtemperatur $t_{n,k}$ kleiner werden. Damit gilt die Bedingung

$$1 - a\Delta\tau \left[\frac{1}{r_k \delta \ln \frac{r_k}{r_{k-1}}} + \frac{1}{r_k \delta \ln \frac{r_{k+1}}{r_k}} + \frac{2}{\Delta h^2} \right] \ge 0,$$
(3.24)

woraus endgültig folgt:

$$\Delta \tau \leq \frac{1}{a \left[\frac{1}{r_{k} \,\delta \,\ln \frac{r_{k}}{r_{k-1}}} + \frac{1}{r_{k} \,\delta \,\ln \frac{r_{k+1}}{r_{k}}} + \frac{2}{\Delta h^{2}} \right]}.$$
(3.25)

Die zulässige Zeitschrittweite ist in Abhängigkeit der Schichtstoffwerte und der Geometrie zu ermitteln.

)

4 Wärmetechnische Modellierung der Bohrung

Bei einer Erdwärmesonde befinden sich im Bohrloch die Vor- und Rücklaufleitungen. Bei der Einfachsonde sind dies zwei, bei der Doppelsonde vier Rohrleitungen (Bild 4.1). Am Sondenfuß sind Vor- und Rücklauf verbunden, beispielsweise als U-Rohr oder mittels spezieller Umlenkstücke. Weiterhin gibt es noch Koaxialsonden mit einem großen Rohr, das in der Regel den abwärtsführenden Vorlauf darstellt, und einem kleineren Innenrohr mit dem aufwärtsführenden Rücklauf.

Bild 4.1 Querschnitte durch typische U-Rohr-Sonden

Das Bohrloch wird mit flüssigem, anschließend aushärtendem Füllmaterial verschlossen. Meistens wird ein Material mit hoher Wärmeleitfähigkeit verwendet, um einen guten Kontakt zwischen Bohrlochwand und Verrohrung zu gewährleisten.

Infolge der zeitlich wechselnden Rohr- und Bohrlochwandtemperaturen wird sich im Füllmaterial auch eine instationäre Wärmeleitung ausbilden. Die Wärmespeicherkapazität des Füllmaterials ist aber gegenüber dem angrenzenden Erdreich sehr klein, sodass es unter den praktischen Gegebenheiten ausreichend genau ist, im Bohrloch die Wärmeleitung quasistationär zu betrachten.

Rasche Temperaturwechsel im Bohrloch sind in der Regel nur bei Schaltvorgängen in der angeschlossenen Anlage zu erwarten, wobei kaum zu erfassende Wärmespeicher- und Strömungsvorgänge der Wärmeträgermedien (z. B. "Pfropfentransporte") überlagert werden.

Im Normalbetrieb treten nur langsame Temperaturänderungen auf, sodass der Ansatz der stationären Wärmeleitung als gerechtfertigt erscheint. Dennoch ist für die im Bild 4.1 vorgestellten Geometrien die Wärmeleitung zwischen den beispielsweise drei beteiligten Zylinderwandungen – Vor- und Rücklauf sowie Bohrlochwand – aber keinesfalls trivial darstellbar. Das sich im Bohrlochquerschnitt einstellende Temperaturfeld ist von den Oberflächentemperaturen der Sondenrohre und der Bohrlochwand abhängig. Eine numerische Lösung für jeden Längenabschnitt i durchzuführen, wäre aber zu aufwendig. Deshalb soll nur eine einmalige Ermittlung von Formfaktoren in Abhängigkeit eines dimensionslosen Temperaturfeldes erfolgen.

Anmerkung: Wird ein zusammenhängender Festkörper von zwei Oberflächen A₁ und A₂ mit den aufgeprägten Temperaturen t₁ und t₂ und eventuell von n weiteren adiabaten Oberflächen begrenzt, kann der stationäre Wärmestrom von A₁ zu A₂ mit Hilfe eines sogenannten Formfaktors S bestimmt werden. In der Literatur [4, 5] finden sich entsprechende Zusammenstellungen für zahlreiche Konstruktionen. In [3] wird gezeigt, dass eine analoge Anwendung auch bei drei Oberflächen A₁, A₂ und A₃ mit den Temperaturen t₁, t₂ und t₃ möglich ist. Die zugehörigen Überlegungen werden nachfolgend wiedergegeben.

4.1 Bekannte Anwendung von Formfaktoren

Für einen Körper mit gleichbleibender axialer Gestalt der Länge L gilt für den Wärmestrom von A_1 zu A_2 allgemein:

$$\dot{Q}_{12} = \lambda S L (t_1 - t_2).$$
 (4.1)

Beispielsweise ergibt sich für einen Hohlzylinder nach Bild 4.2 zwischen innerer und äußerer Oberfläche bei als adiabat angenommenen Deckflächen der Formfaktor

$$S = \frac{2\pi}{\ln\frac{r_2}{r_1}}.$$
(4.2)

Bild 4.2 Hohlzylinder mit den Zylinderflächen A₁, A₂ und den Temperaturen t₁, t₂ sowie mit zwei adiabaten Kreisringflächen der Radien r₁ und r₂ Die Kreisringdurchmesser $2r_1$ und $2r_2$ sind konzentrisch angeordnet. Die Wärmeleitfähigkeit des Zwischenraummaterials sei λ .

Somit folgt z. B. für die Wärmeabgabe eines gedämmten Heizrohres der bekannte Zusammenhang

$$\dot{Q}_{12} = = \lambda S L (t_1 - t_2) = \lambda \frac{2\pi}{\ln \frac{t_2}{r_1}} L (t_1 - t_2).$$
 (4.3)

Die *Bestimmung der Formfaktoren* kann aus dem FOURIERschen Erfahrungsgesetz für den Wärmestrom abgeleitet werden. Allgemein gilt

$$\dot{\mathbf{Q}}_{12} = -\lambda \int_{\mathbf{A}_1} \left(\frac{\partial \mathbf{t}}{\partial \mathbf{n}} \right)_1 d\mathbf{A}_1$$
(4.4)

und für den hier zu betrachtenden Längskörper gleichenbleibenden Querschnitts z. B. am Umfang des Innenrohres (Bild 4.2)

$$\dot{Q}_{12} = -\lambda L \int_{U_1} \left(\frac{\partial t}{\partial n} \right)_1 dU_1.$$
(4.5)

Die Feldtemperatur t ersetzt man zweckmäßigerweise durch die Übertemperatur

$$9 = \frac{\mathbf{t} - \mathbf{t}_2}{\mathbf{t}_1 - \mathbf{t}_2} \,. \tag{4.6}$$

Somit nimmt Gl. (4.5) die Form

$$\dot{Q}_{12} = -\lambda L(t_1 - t_2) \iint_{U_1} \left(\frac{\partial \vartheta}{\partial n} \right)_1 dU_1$$
(4.7)

an, woraus nach Gleichsetzen mit Gl. (4.1) folgt:

$$\mathbf{S} = -\int_{\mathbf{U}_1} \left(\frac{\partial \boldsymbol{\vartheta}}{\partial \mathbf{n}} \right)_1 d\mathbf{U}_1 > \mathbf{0}.$$
(4.8)

Beim Wärmestrom von Fläche 1 zu Fläche 2 gelten $t_1 > t_2$ und $(\partial \vartheta / \partial n)_1 < 0$, sodass S > 0 folgt, was

die übliche Darstellung ist.

Hinweis: Für die Wärmeleitung zwischen zwei beliebigen Oberflächen des Körpers – z. B. zwischen zwei konzentrischen Kugeln – wird Gl. (4.1) $\dot{Q}_{12} = \lambda S_K (t_1 - t_2)$ geschrieben. Hierbei stellt S_K den mit der Dimension einer Länge behafteten Formkoeffizienten dar. Dieser sprachlich richtige Unterschied wurde bereits in [4] eingeführt. Die Bestimmungsgleichung hat dann analog zu Gl. (4.8) die Form: $S_K = -\int_{A_1} (\partial \vartheta / \partial n)_1 dA_1 > 0.$

Die Komplexität der Berechnung der mehrdimensionalen Wärmeleitung in einem beliebig berandeten Körper ist somit nur einmal zu lösen, da das Potenzialfeld der dimensionslosen Übertemperatur ϑ im ausgewählten Körper stets gleich ist.

In [4, 5] sind für eine Vielzahl von Körperformen die Formfaktoren S angegeben. Die Ermittlung erfolgte in der Regel nach anspruchsvollen analytischen Methoden. Es sind aber auch experimentelle Auswertungen der Potenzialfelder, die beispielsweise auf elektrisch leitendem Papier erzeugt wurden, üblich gewesen. Derzeit wird die Wärmeleitung in den mitunter komplizierten Körperstrukturen in der Regel numerisch simuliert und S aus dem ermittelten Wärmestrom eliminiert:

$$S = \frac{Q_{12}}{\lambda L(t_1 - t_2)}.$$
(4.9)

So wurde mit einem noch vorzustellenden Rechenprogramm auf der Basis eines finiten Elementeverfahrens für eine Kreisringscheibe gemäß Bild 4.2 mit den Radien $r_1 = 16$ mm und $r_2 = 75$ mm bei einer quadratischen Gitterteilung von 0,5 mm $S_{SIM} = 4,041$ bestimmt. Aus Gl. (4.2) folgt der exakte Wert zu S = 4,067 (Fehler: -0,6 %).

(4.10)

Als weitere Verifikation dient die Struktur nach Bild 4.3, für die nach [5] die Lösung

$$S = \frac{2 \pi}{\operatorname{ar \cosh} \frac{r_1^2 + r_2^2 - e^2}{2 r_1 r_2}}.$$

existiert.

Bild 4.3 Querschnitt einer aus Bild 4.2 abgeleiteten Struktur mit exzentrischer Lage des Innenrohres (Maße in mm) Die temperierten Umfänge 1 und 2 stellen wiederum Kreise dar.

Mit den Werten des Bildes 4.3, folgt der exakte Wert nach Gl. (4.10) zu S = 4,622. Demgegenüber liefert die numerische Simulation $S_{SIM} = 4,582$ (Abweichung: -0,9 %).

4.2 Erweiterte Formfaktorenmethode

Sind gemäß Bild 4.4 drei Oberflächen A_0 , A_1 , A_2 des umhüllten Körpers die unterschiedlichen Temperaturen t_0 , t_1 , t_2 aufgeprägt, so können formal analog zu Gl. (4.9) zwei Formfaktoren S₁₀ und S₂₀ definiert werden, wobei die Indizes auf die Temperaturbezüge hinweisen:

$$S_{10} = \frac{Q_{10}}{\lambda L(t_1 - t_0)}$$
(4.11)

$$S_{20} = \frac{\dot{Q}_{20}}{\lambda L(t_2 - t_0)}.$$
(4.12)

Hinweis: \dot{Q}_{10} bedeutet, dass der Wärmestrom von der Oberfläche 1 abgegeben wird und dass der Wärmestrom mit der Temperaturdifferenz $t_1 - t_0$ zu bilden ist. Ungeachtet von der Bezugstemperaturdifferenz können Teilwärmeströme an die Oberflächen 0 und 2 fließen.

Bild 4.4 Querschnitt durch eine längenunabhängige Struktur mit den Oberflächen 1, 2 und 0, denen die konstanten Temperaturen t_1 , t_2 und t_0 aufgeprägt sind

Bei zwei temperierten Flächen ist das dimensionslose Übertemperaturfeld ϑ und somit auch der Differenzialquotient $(\partial \vartheta / \partial n)_1$ am Umfang des Rohres 1 unabhängig von der Temperaturdifferenz $(t_1 - t_2)$ stets gleich, sodass S = const gilt.

Es ist leicht einzusehen, dass bei drei unterschiedlich temperierten Flächen das Potenzialfeld z. B. vom Verhältnis der Übertemperaturen

$$\Theta = \frac{t_1 - t_0}{t_2 - t_0} \tag{4.13}$$

beeinflusst wird. Somit sind S_{10} und S_{20} von Θ abhängige Größen, also im eigentlichen Sinne keine reinen Formfaktoren mehr.

Hinweis: Selbstverständlich könnte das Verhältnis der Übertemperaturen beispielsweise auch als $\Theta^* = (t_2 - t_0) / (t_1 - t_0)$ definiert werden. Man sollte eine Form wählen, die bei der Nutzung des praktisch infrage kommenden Temperaturbereichs keine Unendlichkeitsstelle (Nenner gleich null) verursacht.

Pragmatischer Weise bestimmt man für die im Bild 4.4 dargestellte Struktur mittels numerischer Simulation unter Annahme verschiedener Temperaturen t_1 , t_2 und t_0 die Wärmeströme \dot{Q}_{10} sowie \dot{Q}_{20} , ermittelt nach den Gln. (4.11) und (4.12) S_{10} sowie S_{20} und stellt sie als Funktion von Θ dar.

4.3 Algorithmus zur Bestimmung von Formfaktoren für Sondengeometrien

Zur Berechnung der Wärmeströme \dot{Q}_{10} sowie \dot{Q}_{20} könnten grundsätzlich herkömmliche Rechenprogramme, die auf der Grundlage von finiten Differenzenverfahren oder finiten Volumenverfahren arbeiten, eingesetzt werden. Nachfolgend wird eine spezielle Eigenentwicklung beschrieben.

• Gitterfestlegung

Es wird von einer x,y-Ebene mit den Abmessungen x = 0 bis xmax und von y = 0 bis ymax ausgegangen. In dieser erstreckt sich ein zweidimensionales, rechtwinkliges, äquidistantes Gitter mit der Teilung $\Delta x = \Delta y$. Damit ergeben sich gemäß Definition die Gitterlinien nach Bild 4.5 mit imax = xmax / Δx (4.14) jmax = ymax / Δx . (4.15) Die simulierte Querschnittsfläche ist somit allseitig um $\Delta x/2$ größer als xmax × ymax.

Bild 4.5 x,y-Ebene mit äquidistantem Gitternetz und beispielhaft eingetragenem Bohrlochquerschnitt nach Gl. (4.16)

Geometrie der wärmeübertragenden Flächen

Bei den zu betrachtenden Rohren 1 und 2 sowie dem Bohrloch 0 handelt es sich im Querschnitt um Kreise. Sie werden durch die Koordinaten der Mittelpunkte und die Radien definiert, sodass die Kreisgleichungen gelten:

Bohrloch
$$(x - x_0)^2 + (y - y_0)^2 = r_0^2$$
 (4.16)

Rohr 1
$$(x - x_1)^2 + (y - y_1)^2 = r_1^2$$
 (4.17)

$(x - x_2)^2 + (y - y_2)^2 = r_2^2$. Rohr 2 (4.18)

Flächenkennzeichnung •

Es erfolgt die Abarbeitung aller Gitterpunkte i = 0 bis imax und j = 0 bis jmax. Dazu gehören jeweils die Koordinaten $x = i \Delta x$ und $y = j \Delta x$.

Liegt der Koordinatenpunkt innerhalb Rohr 1 $\{(x - x_1)^2 + (y - y_1)^2 \le r_1^2\}$ wird die Flächenkennzahl KZ(i, j) = 1 gesetzt. Liegt er innerhalb Rohr 2, so gilt KZ(i, j) = 2. Ist dies beides nicht der Fall, befindet sich der Koordinatenpunkt aber innerhalb des Kreises 0 (Bohrloch), so werde KZ(i, j) = 3gesetzt. Liegt er außerhalb des Bohrlochs (Erdreich) so gilt KZ(i, j) = 0.

Temperaturfüllung •

Anhand der Kennzahlen werden den zugehörigen Gitterpunkten die vorgegebenen Temperaturen zugewiesen. Für KZ(i,j) = 1 gilt t_1 , für KZ(i,j) = 2 gilt t_2 und für KZ(i,j) = 0 gilt t_0 . Diese Temperaturen sind Eingabewerte, womit nach Gl. (4.13) das Verhältnis der Übertemperaturen Θ definiert ist.

• Berechnung der Wärmeströme in der Struktur

Um die gesuchten Wärmeströme \dot{Q}_{10} sowie \dot{Q}_{20} bestimmen zu können, muss das Temperaturfeld im Kennzahlbereich 3 bestimmt werden. Dies erfolgt in folgenden Schritten:

- Vorgabe einer Starttemperatur für alle KZ(i, j) = 3, die aus t_1, t_2 und t_0 gemittelt ist.
- Lösung der instationären Wärmeleitung im Gebiet 3, indem eine finite Elementemethode verwendet wird. Der Zeitschritt $\Delta \tau$ wird unter Beachten der Gl. (3.21) für $\Delta x = \Delta y$ und $\Delta z = 1$ m sowie für programmintern festgelegte, fiktive Stoffwerte bestimmt. Es werden für alle i,j-Elemente (Volumen = $\Delta x^2 \times 1 \text{ m}^3$) mit KZ(i, j) = 3 die Wärmen zwischen den Elementen bestimmt. So beispielsweise:

$$Q_{j,ein} = \lambda \frac{t_{i,j-1} - t_{i,j}}{\Delta y} \Delta x \ \Delta z \ \Delta \tau = 1 \cdot (t_{i,j-1} - t_{i,j}) \cdot 1 \cdot \Delta \tau.$$
(4.19)

Aus der Wärmebilanz für das Element i, j

$$QE = Q_{i,ein} + Q_{j,ein} - Q_{i,aus} - Q_{j,aus}$$

$$(4.20)$$

folgt die neue Temperatur am Ende des Zeitschrittes $\Delta \tau$ mit CE, der Wärmekapazität des Volumenelementes und den programmintern verwendeten Stoffwerten zu:

$$tn_{i,j} = t_{i,j} + \frac{QE}{CE}$$
 (4.21)

Zusätzlich werden die innerhalb von $\Delta \tau$ an die Bereiche 0, 1 oder 2 übertragenen Wärmen erfasst und unter Q0, Q1 oder Q2 summiert. Grenzt das im Kennzahlbereich 3 liegende Element an den Bereich 0, 1 oder 2, so wird die jeweils übertragene Wärme zu Q0, Q1 oder Q2 addiert oder subtrahiert. Z. B. gilt für Q_{j,ein} nach Gl. (4.19), wenn KZ(i,j-1) = 0 galt, Q0 = Q0 – Q_{j,ein}. Anschließend werden die neuen Temperaturen umgespeichert t_{i,j} = tn_{i,j} und es erfolgt eine weitere Neuberechnung des Temperaturfeldes für den Kennzahlbereich 3.

Die Berechnung wird beendet, wenn |Q0 + Q1 + Q2| / |Q0| < 0,001gilt, d. h. ein nahezu stationärer Zustand in Form eines unveränderten Temperaturfeldes vorliegt.

$$S_{10} = \frac{-Q1}{\Delta \tau (t_1 - t_0)}; \qquad S_{20} = \frac{-Q2}{\Delta \tau (t_2 - t_0)}.$$
(4.22)

Es ist zusätzlich möglich, noch Korrekturfaktoren anzubringen, die Fehler durch die Gitterstruktur mindern.

 Die numerische Berechnung kann verkürzt werden, wenn man das Simulationsgebiet xmax, ymax durch Nutzung der wärmetechnischen Symmetrieebene nach Bild 4.1 begrenzt. Durch diese Möglichkeit ist auch die Ermittlung der Formfaktoren für eine Doppelsonde gegeben.

4.4 Formfaktoren für spezielle Erdwärmesonden

• Beispiele I

Es werden verschiedene Rohrquerschnitte betrachtet (Bild 4.7). Die Ergebnisse für die Sondenvarianten A und B sind in der Tabelle 4.1 für ausgewählte Übertemperaturverhältnisse Θ dargestellt. Die grafische Ergebnisauswertung der in Tabelle 4.1 gegebenen Werte zeigen die Diagramme im Bild 4.8.

Tabelle 4.1 Formfaktoren für die Sondenquerschnittefür Variante A und Variante B gemäß Bild 4.7 alsFunktion des Übertemperaturverhältnisses Θ

Bild 4.7 Querschnitte durch die Sondenvarianten A und B (Maße in mm)

Variante A zeigt eine U-Rohr-Sonde in Form einer Einfachsonde. Bei Variante B ist das austretende Rohr (Rücklauf) beispielsweise in der Nähe der Erdoberfläche zusätzlich gedämmt.

	Varia	nte A	Variante B			
Θ	S ₁₀ S ₂₀		S_{10}	S ₂₀		
0,5	2,486	4,394	1,402	7,289		
1	3,758	3,758	3,472	6,256		
2	4,394	2,486	4,507	4,192		

Bild 4.8 Verläufe der Formfaktoren für die Einfachsonde (Aufbau nach Bild 4.7) als Funktion des Übertemperaturverhältnisses Θ für Variante A und Variante B Teilung der Abszisse: oben linear; unten reziprok

Aus Bild 4.8 ist erkennbar, dass S_{20} eine lineare Funktion von Θ und S_{10} eine lineare Funktion von Θ^{-1} darstellt. Im Einzelnen gelten:

Variante A	
$S_{20} = 5,030 - 1,272 \Theta$	(4.23)
$S_{10} = 5,030 - 1,272 \Theta^{-1}$.	(4.24)
Variante B	
$S_{20} = 8,320 - 2,064 \Theta$	(4.25)
$S_{10} = 5,542 - 2,070 \ \Theta^{-1}.$	(4.26)
Ein die Denschwung den Wärmegsträmen Ó, gewie Ó	die eus den Definitionseleichungen (111) und

Für die Berechnung der Wärmeströme Q_{10} sowie Q_{20} , die aus den Definitionsgleichungen (4.11) und (4.12) folgen, sind selbstverständlich die den Oberflächen zugeordneten Temperaturen t_1 , t_2 und t_0 zu verwenden.

Die Beziehungen zu den in den beiden Innenrohren anliegenden Medientemperaturen t_{F1} und t_{F2} sind in bekannter Weise mittels der Wärmeübergangswiderstände und der Wärmeleitwiderstände (Rohrwand und eventuell vorhandene Dämmung) herzustellen. Näheres ist im Abschnitt 4.6 zu finden.

• Beispiele II

Außer den drei Körperoberflächen kann die betrachtete Struktur auch durch adiabate Flächen begrenzt werden. Weiterhin ist es möglich, dass die Struktur Körper mit abweichender Wärmeleitfähigkeit einschließt. Derartige Beispiele zeigt Bild 4.9. Die zugehörigen Simulationsergebnisse sind in Tabelle 4.2 gegenübergestellt.

Bild 4.9 Querschnitte durch die Sondenvarianten C bis F (Maße in mm)

Die Varianten C und D sind bezüglich der Temperaturfelder in den beiden Strukturhälften identisch, da die Symmetrieebene lediglich durch eine adiabate Begrenzung dargestellt wird. Bei Variante E ist eine Teilabschirmung zwischen Vor- und Rücklauf installiert. Für die Wärmeleitfähigkeit der Trennwand gilt $\lambda_{\text{Trennwand}} = 0,1 \lambda$. Variante F stellt wärmetechnisch eine vollkommene Trennung zwischen dem Vor- und Rücklaufbereich dar.

Tabelle 4.2 Formfaktoren für die Sondenquerschnitte C bis F gemäß Bild 4.9 als Funktion des Übertemperaturverhältnisses Θ

	Varia	inte C	Variante D		Variante E		Variante F	
Θ	S ₁₀	S ₂₀	S ₁₀ S ₂₀		S_{10}	S ₂₀	S_{10}	S ₂₀
0,5	2,854	3,854	1,427	1,927	3,194	3,461	3,521	3,521
1	3,521	3,521	1,760	1,760	3,372	3,372	3,521	3,521
2	3,854	2,854	1,927	1,427	3,461	3,194	3,521	3,521

Damit lauten die Berechnungsgleichungen für die Formfaktoren:

Variante C	
$S_{20} = 4,188 - 0,667 \Theta$	(4.27)
$S_{10} = 4,188 - 0,667 \ \Theta^{-1}$	(4.28)
Variante D	
$S_{20} = 2,094 - 0,333 \Theta$	(4.29)
$S_{10} = 2,094 - 0,333 \ \Theta^{-1}$	(4.30)
Variante E	
$S_{20} = 3,550 - 0,178 \Theta$	(4.31)
$S_{10} = 3,550 - 0,178 \Theta^{-1}$	(4.32)
Variante F	
	(1.22)

 $S_{20} = S_{10} = 3,521. \tag{4.33}$

Ergebnisdiskussion:

- Dass die Formfaktoren der Variante D halb so groß sind wie bei Variante C ist sofort einleuchtend, da der Strukturquerschnitt halbiert ist.
- Die Abschirmung durch eine Trennwand dämpft den Einfluss der unterschiedlichen Vor- und Rücklauftemperaturen. Dadurch sind die Formfaktoren weniger temperaturabhängig. Der Wärmeaustausch zwischen den Innenrohren und dem Hüllrohr (z. B. der Bohrlochwand) ist aber kleiner als bei Variante C, da die Trennwand mit der geringeren Wärmeleitfähigkeit den Wärmeleitwiderstand der Struktur erhöht (vergleiche S(Θ = 1)).
- Die adiabate Wand bei Variante F unterbindet den gegenseitigen Temperatureinfluss der Innenrohre völlig. Es liegt somit eine Struktur mit nur jeweils zwei Oberflächen vor, weshalb die Formfaktoren temperaturunabhängig gelten. Die Werte sind den Formfaktoren der Variante C für Θ = 1 identisch, da dort ein symmetrisches Temperaturfeld existiert. Hierbei würde eine dünne, adiabate Wand keinen Einfluss nehmen.

• Beispiele III

Im Bild 4.10 wird eine U-Rohr Doppelsonde betrachtet. Bei dieser Struktur wird das Temperaturfeld im Bohrloch durch fünf verschiedene Oberflächentemperaturen beeinflusst. Die symmetrische Anordnung gestattet es jedoch, nur eine Strukturhälfte zu untersuchen und anstelle der Symmetrieebene eine adiabate Wand einzufügen. Somit sind in jeder Hälfte nur wiederum drei Oberflächen

Bild 4.10 Querschnitte durch eine Doppelsonde mit Darstellung des auswertbaren Ersatzmodells

mit unterschiedlicher Temperatur vorhanden und das vorgestellte Verfahren zur Bestimmung von S_{10} sowie S_{20} kann Anwendung finden. Die Ergebnisse sind nachfolgend zusammengestellt.

Tabelle 4.3 Formfaktoren für den Querschnitt
der Doppelsonde gemäß Bild 4.10 als Funktion
des Übertemperaturverhältnisses Θ

	Variante G			
Θ	S_{10}	S ₂₀		
0,5	3,015	4,029		
1	3,691	3,691		
2	4,029	3,015		

Variante G

$S_{20} = 4,367 - 0,676 \Theta$	(4.34)
$S_{10} = 4,367 - 0,676 \Theta^{-1}.$	(4.35)

• Berücksichtigung der Exzentrität der Rohre im Bohrloch

In der Literatur über Erdwärmesonden wird mitunter die asymmetrische Rohranordnung innerhalb des Bohrlochs diskutiert. Die entsprechenden Geometrien können bei der Ermittlung der Formfaktoren problemlos berücksichtigt werden. Tabelle 4.4 zeigt beispielhaft Ergebnisse für $\Theta = 1$. Die Optimierung der Lage ist aber nur sinnvoll, wenn auch der exakte Einbau gewährleistet werden kann.

Tabelle 4.4 Formfaktoren für verschiede Rohranordnungen im Bohrloch bei $\Theta = 1$

• Hinweis auf mögliche Veränderung der Formfaktorendefinition

Das Einbeziehen von Füllkörpern mit abweichender Wärmeleitfähigkeit von der Grundstruktur, wie beispielsweise bei Vorhandensein einer Trennwand (Bild 4.9, Variante E), ermöglicht auch grundsätzlich veränderte Definitionen. So wäre es denkbar, die Wärmeleitwiderstände der Rohrwandung und ihrer zusätzlichen Dämmschicht (z. B. bei Bild 4.7, Variante B) in die Formfaktoren zu integrieren. Als Bezugstemperaturen müssten dann die inneren Rohrwandtemperaturen bei der Ermittlung der dimensionslosen Übertemperatur verwendet werden. (Der hier benutzte Verfahrensweg zum Einbeziehen der Wärmeleitwiderstände des Rohres ist im Abschnitt 4.6 dargelegt.)

4.5 Rechenprogramm zur Bestimmung von Formfaktoren

Das Rechenprogramm beruht auf dem im Abschnitt 4.3 vorgestellten Modell. Es steht zum kostenlosen Download bereit (siehe auch Abschnitt 7). Das lauffähige Programm ist in der Programmierumgebung VisualBasic.net (Standard) erstellt worden. Nachfolgend ist die Programmoberfläche mit dem Beispiel Variante C (Seite 24) im Bild 4.11 gezeigt.

📇 Hauptprogramm - Formfaktoren						
Formfaktoren für Erdwärmesonden						
Autor: Prof. DrIng. habil. Bernd Glück (V1/2008)	Rechnung beendet!					
Eingaben zur Berechnung der Formfaktoren						
Geometriedaten	Simulationsebene zur numerischen Ermittlung der Formfaktoren für Erdwärmesonden					
Innenrohr 1: Radius (außen) 12,5 mm Mittelpunkt x0 35 mm Mittelpunkt y1 80 mm Innenrohr 2: Radius (außen) 12,5 mm Mittelpunkt x2 120 mm Mittelpunkt y2 80 mm	Bohrloch- wand 0 Fläche 1, Rohr 1					
Simulationsgebiet: xmin 0 mm xmax 170 mm ymin 0 mm ymax 160 mm Dx = Dy 0,5 mm	y ₁ y ₀ Y ₁ Place 3 Rohr 2					
Temperaturen Ergebnisse Berechnungs-schritte Bohrlochwand Rohr 1 Rohr 2 Theta S10 S20 Schritte 10 30 ° C t1 20 ° C t2 10 ° C	y y X Fläche 2 ediabate					
Fläche 1 Fläche 2 Fläche 3 FKorr1 FKorr2 490,3 490,3 16684,8 1,001 1,001	X1 X0 X2 Begrenzung Adiabate Wand wird nicht benützt!					
1. STARTEN drücken und Pfad 2. Daten aus Datei laden oder 3. Bei Eingabe oder Korrektur der 4. DATENSPE bestätigen bzw. neu eingeben! Neueingabe vornehmen! Werte bitte nur Zahlen, Komma, Minuszeichen oder "Blank" verwenden! 4. DATENSPE	EICHERUNG zur 5. BERECHNUNG zur 6. Mittels DRUCKEN Speicherung der Ermittlung der Form- ken! fektoren aktivieren! Eingaben und der Ergebnisse starten.					
STARTEN DATEI LADEN DATENSPEICHERUNG BERECHNUNG FOR	MFAKTOREN DRUCKEN BEENDEN					

Bild 4.11 Programmoberfläche zur Ermittlung der Formfaktoren für die wärmetechnischen Zusammenhänge im Bohrloch von Erdwärmesonden mit den Daten für Variante C

In der Bildschirmmaske sind außer den Eingabedaten auch die wichtigsten Ergebnisse sowie die Buttons zur Steuerung des Programmablaufs enthalten. Mit DRUCKEN kann beispielsweise der komplette Ausdruck des Berechnungsbeispiels erfolgen.

Ausdruck des Rechenprogramms:

OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\FORMFAKTOREN\VARIANTE_C\

Lambda W/(m K)	rO	x0	У0	rl	x1 mm	у1	r2	x2	у2
1,000	75,0	85	80	12,5	50	80	12,5	120	80
xmin	xmax	Dx mm	ymi	n	ymax		t0	t1 °C	t2
0	170	0,5	0		160		30	20	10
F3	F1 mm²	F2	F	Korr1	FKorr2				
16684,8	490,3	490,3	1	,001	1,001				
QO	Q1 W/m	Q2							
-30,3 -40,3 -52,2	76,1 60,7 53,3	159,0 126,6 112,0							
-61,5 -68,6	48,4 44,9	103,3 97,5							
-78,8 -82,6	42,2 40,0 38,2	90,4 90,4 88,0							
-85,8 -88,6 -90,9	36,8 35,6 34,5	86,2 84,7 83,5							
-93,0 -94,7	33,7 32,9	82,5 81,6		Forts	etzung auf fo	olgender	Seite!		

QO	Q1 W/m	Q2
-96 , 2	32,3	80,9
-97 , 5	31,7	80,3
•		
•		
•		
-105,4	28,5	77,0
-105,4	28,5	77,0
-105,4	28,5	77,0

Entwicklung der Wärmeströme von der ersten Temperaturannahme bis zu einer ausgeglichenen Wärmebilanz, der von den drei Bereichsstrukturen aufgenommenen Wärmeströme. Im berechneten Beispiel sind 50000 Berechnungsschritte notwendig geworden, wobei nach je 1000 Berechnungsschritten ein Ausdruck erfolgte. In der linken Tabelle wird nur ein Auszug wiedergegeben.

```
Maximale Schrittzahl: 50000
Formfaktoren S in W/(m K) und Übertemperaturverhältnis:
S10 = 2,854 S20 = 3,854 theta = 0,500
```

Das Beispiel wurde gemäß Bild 4.9 (Variante C) durch die Eingaben abgebildet und berechnet. Unter Nutzung der Symmetriebedingung, die durch eine adiabate Wand bei der Eingabe realisiert wird, kann die Berechnung verkürzt werden. Sie entspricht dann der Variante D. Die zugehörige Bildschirmmaske ist im Bild 4.12 dargestellt.

Bild 4.12 Programmoberfläche zur Ermittlung der Formfaktoren für die wärmetechnischen Zusammenhänge im Bohrloch von Erdwärmesonden mit den Daten der Variante D

4.6 Besonderheiten bei Verwendung der Formfaktoren im Simulationsprogramm

Die ermittelten Formfaktoren liegen – wie vorstehend abgeleitet – z. B. als Gln. (4.23) bis (4.35) vor. Die allgemeine Darstellung lautet mit den Indizes RL Rücklauf und VL Vorlauf:

Formfaktoren für ungedämmte Sondenrohre im Bohrloch

$S_{20} \equiv S_{RL} = a_2 + b_2 \ \Theta$	(4.36)
$S_{10} \equiv S_{VL} \equiv a_1 + b_1 \Theta^{-1}$	(4.37)
Formfaktoren für gedämmte Sondenrohre im Bohrloch	
$S_{20} \equiv S_{RL} = a_{2D} + b_{2D} \ \Theta$	(4.38)
$S_{10} \equiv S_{VL} = a_{1D} + b_{1D} \Theta^{-1}.$	(4.39)

Zugehörig gilt das Übertemperaturverhältnis gemäß Gl. (4.13) mit den speziellen Temperaturbezeichnungen (Oberflächentemperatur der Vorlaufleitung t_{VL} , Oberflächentemperatur der Rücklaufleitung t_{RL} , Bohrlochwandtemperatur t_{BL})

$$\Theta = \frac{t_{VL} - t_{BL}}{t_{RL} - t_{BL}} \equiv \frac{t_{BL} - t_{VL}}{t_{BL} - t_{RL}}.$$
(4.40)

Wird die Erdwärmesonde als Wärmequelle oder als Wärmesenke eingesetzt, ergeben sich beispielsweise die Temperaturverläufe nach Bild 4.13. In allen Rohrabschnitten i gilt dann stets $\Theta > 0$. Bei stark instationären Abläufen (Anfahren der Sonde nach zeitweisem Stillstand) und/oder bei sehr kleinen Sondendurchflüssen sind auch Temperaturverläufe nach Bild 4.14 denkbar. Das Übertemperaturverhältnis kann dabei theoretisch einen Bereich von $\Theta = -\infty \dots +\infty$ durchlaufen, wodurch die Formfaktoren Unendlichkeitsstellen aufweisen können. Die zwischen den nackten oder gedämmten Rohroberflächen und der Bohrlochwand vorhandenen Wärmeströme sind aber stets endlich. Deshalb wird gleich zur Wärmestromermittlung übergegangen. Z. B. folgen aus den Gln. (4.11) und (4.12) mit der Wärmeleitfähigkeit der Bohrlochfüllung λ_{BL} :

$$Q_{VL} = \lambda_{BL} \Delta h S_{VL} (t_{BL} - t_{VL}) = \lambda_{BL} \Delta h \{a_1 (t_{BL} - t_{VL}) + b_1 (t_{BL} - t_{RL})\}$$
(4.41)

$$Q_{RL} = \lambda_{BL} \Delta h S_{RL} (t_{BL} - t_{RL}) = \lambda_{BL} \Delta h \{a_2 (t_{BL} - t_{RL}) + b_2 (t_{BL} - t_{VL})\}.$$
(4.42)

Dabei ist per Definition der Wärmestrom von der Bohrlochwand zu den Sondenrohren positiv.

Bild 4.13 Erdwärmesonde als Wärmequelle (links) und als Wärmesenke (rechts) mit kontinuierlicher Temperaturveränderung des Sondenvor- und -rücklaufes (Übertemperaturverhältnis $\Theta > 0$)

Bild 4.14 Erdwärmesonde als Wärmequelle in einem Anfahrzustand (Übertemperaturverhältnis Θ wechselnd)

Letztlich sind stets die Wärmeströme auf die Medientemperaturen in den Vor- und Rücklaufleitungen (t_V bzw. t_R) zu beziehen. Mit den später abgeleiteten Teilwärmedurchgangskoeffizienten κ_R (Gl. (5.13)) bzw. κ_{DV} und κ_{DR} (Gl. (5.13a)) folgen die Zusammenhänge zwischen Rohroberflächentemperatur und Medientemperatur. Dies sei zunächst für die ungedämmten Rohre (Rohraußendurchmesser d_a, Rohrlänge des betrachteten Abschnittes Δh) gezeigt:

$$t_{VL} = t_V + \frac{\dot{Q}_{VL}}{\kappa_R \pi d_a \Delta h} \qquad (4.43) \qquad t_{RL} = t_R + \frac{\dot{Q}_{RL}}{\kappa_R \pi d_a \Delta h}. \qquad (4.44)$$

Setzt man diese Beziehungen in die Gln. (4.41) und (4.42) ein, so ergeben sich:

$$\dot{Q}_{VL} = \lambda_{BL} \Delta h \left\{ a_1 \left(t_{BL} - t_V - \frac{\dot{Q}_{VL}}{\kappa_R \pi d_a \Delta h} \right) + b_1 \left(t_{BL} - t_R - \frac{\dot{Q}_{RL}}{\kappa_R \pi d_a \Delta h} \right) \right\}$$
(4.45)

$$\dot{Q}_{RL} = \lambda_{BL} \Delta h \left\{ a_2 \left(t_{BL} - t_R - \frac{\dot{Q}_{RL}}{\kappa_R \pi d_a \Delta h} \right) + b_2 \left(t_{BL} - t_V - \frac{\dot{Q}_{VL}}{\kappa_R \pi d_a \Delta h} \right) \right\}.$$
(4.46)

Nach Einführen der Abkürzungen

$$R = \frac{1}{\lambda_{BL} \Delta h} + \frac{a_2}{\kappa_R \pi d_a \Delta h}; \quad V = \frac{1}{\lambda_{BL} \Delta h} + \frac{a_1}{\kappa_R \pi d_a \Delta h}; \quad S = \frac{b_2}{\kappa_R \pi d_a \Delta h}; \quad T = \frac{b_1}{\kappa_R \pi d_a \Delta h}$$
$$x = [a_1 (t_{BL} - t_V) + b_1 (t_{BL} - t_R)]; \quad y = [a_2 (t_{BL} - t_R) + b_2 (t_{BL} - t_V)]$$

und längerem Umformungen folgen:

$$\dot{Q}_{VL} = \frac{x R - y T}{V R - S T}$$

$$(4.47)$$

$$\dot{Q}_{RL} = \frac{y v - x S}{V R - S T}.$$
 (4.48)

Die aufwändigen Substitutionen in den vorgestellten Ableitungen ermöglichen es, die explizite Bestimmung der Rohroberflächentemperaturen zu umgehen. Somit finden die Koeffizienten der Formfaktoren direkt Eingang in die Berechnungen, wie die vorgestellten Abkürzungen zeigen.

Die Ermittlung der Wärmeströme erfolgt abschnittsweise für die jeweilige Rohrlänge Δh und die determinierten Temperaturen t_V, t_R und t_{BL}. Damit ist eine iterationsfreie Ermittlung der Wärmeströme – in der Regel ohne numerische Komplikationen – gegeben. Die Zuordnungen der Größen werden im Abschnitt 5.3 beschrieben.

Die analogen Ableitungen gelten auch für gedämmte Rohre. Hierbei ist zu beachten, dass die Vorund Rücklaufleitungen unterschiedlich dick gedämmt sein können (Außendurchmesser d_{DV} bzw. d_{DR}). Damit ergeben sich auch veränderte Teilwärmedurchgangskoeffizienten κ_{DV} bzw. κ_{DR} . Mit den neuen Definitionen folgen schrittweise:

$$t_{\rm VL} = t_{\rm V} + \frac{Q_{\rm VL}}{\kappa_{\rm DV} \,\pi \,d_{\rm DV} \,\Delta h} \tag{4.49}$$

$$t_{\rm RL} = t_{\rm R} + \frac{\dot{Q}_{\rm RL}}{\kappa_{\rm DR} \,\pi \,d_{\rm DR} \,\Delta h}. \tag{4.50}$$

$$\dot{Q}_{VL} = \lambda_{BL} \Delta h \left\{ a_{1D} \left(t_{BL} - t_V - \frac{\dot{Q}_{VL}}{\kappa_{DV} \pi d_{DV} \Delta h} \right) + b_{1D} \left(t_{BL} - t_R - \frac{\dot{Q}_{RL}}{\kappa_{DR} \pi d_{DR} \Delta h} \right) \right\}$$
(4.51)

$$\dot{Q}_{RL} = \lambda_{BL} \Delta h \left\{ a_{2D} \left(t_{BL} - t_R - \frac{\dot{Q}_{RL}}{\kappa_{DR} \pi d_{DR} \Delta h} \right) + b_{2D} \left(t_{BL} - t_V - \frac{\dot{Q}_{VL}}{\kappa_{DV} \pi d_{DV} \Delta h} \right) \right\}.$$
(4.52)

$$R = \frac{1}{\lambda_{BL} \Delta h} + \frac{a_{2D}}{\kappa_{DR} \pi d_{DR} \Delta h}; V = \frac{1}{\lambda_{BL} \Delta h} + \frac{a_{1D}}{\kappa_{DV} \pi d_{DV} \Delta h}; S = \frac{b_{2D}}{\kappa_{DV} \pi d_{DV} \Delta h}; T = \frac{b_{1D}}{\kappa_{DR} \pi d_{DR} \Delta h}$$
$$x = [a_{1D} (t_{BL} - t_V) + b_{1D} (t_{BL} - t_R)]; \qquad y = [a_{2D} (t_{BL} - t_R) + b_{2D} (t_{BL} - t_V)].$$

Die Wärmeströme berechnen sich wiederum nach den Gln. (4.47) und (4.48).

5 Wärmetechnische Modellierung des Rohrsystems

Die wärmetechnische Betrachtung der Bohrlochgeometrie mit den medienführenden Rohrleitungen im allgemeinen Teil des Abschnittes 4 stellt die Berechnung der Wärmeströme bis zu den Rohroberflächen her. Um auf den Wärmestrom an das fließende Medium schließen zu können, muss der Wärmeleitwiderstand in der Rohrwand und der Übergangswiderstand zum Medium beachtet werden. Dies erfolgte für die übliche Sondengeometrie im speziellen Abschnitt 4.6.

Da sich die Temperaturen der Bohrlochwand und des Mediums tiefenabhängig ändern, ist eine abschnittsweise Betrachtung unabdingbar. Gemäß Bild 2.1 werden die bereits definierten Abschnitte i = 0 ... imax verwendet. Somit sind für die Wärmeleistung der Erdwärmesonde auch der Medienstrom, seine Stoffwerte und die abschnittsweisen Eintrittstemperaturen des Vor- und Rücklaufs bedeutungsvoll. In den nachfolgenden Unterabschnitten werden die entsprechenden Stoffwertapproximationen und Teilalgorithmen vorgestellt.

5.1 Zustands- und Stoffwerte der Durchflussmedien (Wasser, Tyfocor L)

Für die Vielzahl der Einsatzfälle werden Wasser und Tyfocor L (Wasser-Propylenglykol-Gemisch bei Mischungsanteilen von ca. 40 % bis -20 °C, bei 25 % bis -10 °C frostsicher) als realistische, nicht gesundheitsgefährdende Medien ausgewählt. Die Kurzbezeichnungen für die wässrigen Tyfocorlösungen lauten im Weiteren TL40 und TL25.

Für die genannten Flüssigkeiten und für Temperaturen bis 100 °C werden die Approximationen in Tabelle 5.1 vorgeschlagen. Für das Wasser-Propylenglykol-Gemisch basieren diese auf grafischen Angaben des Herstellers. Die Visualisierung der approximierten Stoffdaten zeigt Bild 5.1.

Tabelle 5.1 Approximationen für die Stoffwerte von Wasser und wässrigen Tyfocorlösungen TL40, TL25

Dichte in kg/m ³ mit t in °C
$\rho_{Wasser} = 1002,045 - 0,1029905 t - 0,003698162 t^2 + 0,000003991053 t^3$
$\rho_{TL40} = 1050 - 0,4857143 t - 0,001746031 t^2 + 0,000001984122 t^3$
$\rho_{TL25} = 1031 - 0,3214706 t - 0,002498191 t^2 + 0,000001170051 t^3$
Spezifische Wärmekapazität in J/(kg K) mit t in °C
$c_{Wasser} = 4212,404 - 2,271266 t + 0,0396373 t^2 - 0,0001543466 t^3$
$c_{TL40} = 3610 + 3,881099 t - 0,005363271 t^2 + 0,00002980124 t^3$
$c_{TL25} = 3876 + 2,371942 t + 0,004128137 t^2 - 0,00003225045 t^3$
Wärmeleitfähigkeit in W/(m K) mit t in °C
$\lambda_{Wasser} = 0,5587913 + 0,002268458 t - 0,00001248304 t^2 + 0,00000001890318 t^3$
$\lambda_{TL40} = 0,3520003 + 0,001788111 t - 0,0000005362851 t^2 + 0,0000000297968 t^3$
$\lambda_{TL25} = 0,4020909 + 0,002401029 t - 0,0000001497917 t^{2} + 0.000000005697341 t^{3}$
Kinematische Viskosität in m ² /s mit t in °C
$v_{\text{Wasser}} = (556272,7 + 19703,39 \text{ t} + 124,4091 \text{ t}^2 - 0,3770952 \text{ t}^3)^{-1}$

 $v_{TL40} = 0,0000114 \cdot Exp(-0,0002167876 - 0,05785851 t + 0,0004864946 t^{2} - 0,00000186843 t^{3})$ $v_{TL25} = 0.0000056 \cdot Exp(0,02699025 - 0,04543205 t + 0,0003234937 t^{2} - 0,000001076019 t^{3})$ Prandtlzahl mit t in °C $Pr_{Wasser} = (0,07547718 + 0,00276297 t + 0,00003210257 t^{2} - 0,000001015768 t^{3})^{-1}$

Die Prandtlzahlen für Tyfocor L werden aus den Einzelgrößen gebildet:

 $\Pr = \frac{v}{a} = \frac{v\rho c}{\lambda}$

Bild 5.1 Grafiken für die Stoffwerte von Wasser und wässrigen Tyfocorlösungen TL40, TL25

5.2 Wärmeübergangskoeffizient für die Rohrströmung und Teilwärmedurchgangskoeffizient

Die Ermittlung des konvektiven Wärmeübergangskoeffizienten basiert auf der Ähnlichkeitstheorie unter Verwendung der Nußeltgleichungen nach [6, 7]. Es gelten die Größen:

t	°C	Temperatur des Fluids	t_{W}	°C	Temperatur der	Rohrwand
d_i	m	Rohrinnendurchmesser	d_a	m	Rohraußendurc	hmesser
L	m	gerade Rohrlänge		m/s	Durchflussgesc	hwindigkeit
ν	m²/s	kinematische Viskosität des Fluids	c	J/(kg K)	spezifische Wär des Fluids	rmekapazität
λ	W/(m K)	Wärmeleitfähigkeit des Fluids	ρ	kg/m³	Dichte des Flui	ds
Pr	-	PRANDTLzahl des Fluids	Nu	_	NUSSELTzahl	$Nu = \alpha_R d_i / \lambda$
Re	_	REYNOLDSzahl Re = w d_i / v	α_R	$W/(m^2K)$	Wärmeübergan	gskoeffizient.

Bei den zu betrachtenden Einsatzgebieten ist nur die erzwungene Strömung von Interesse, sodass in Abhängigkeit der Strömungsart angegeben werden können:

Nußeltzahl bei laminarer Strömung ($\text{Re} \leq 2300$)

Nu =
$$\left(49,028 + 4,173 \operatorname{Re} \operatorname{Pr} \frac{d_i}{L}\right)^{0,333}$$
 (5.1)

Gültigkeitsbereich: Re < 2300; $0,1 < Re Pr d_i/L < 10^4$ Nußeltzahl bei turbulenter Strömung (Re > 2300)

Nu =
$$\frac{B(Re - 1000)Pr}{1 + 12,7B^{0.5}(Pr^{0.667} - 1)} \left(1 + \left(\frac{d_i}{L}\right)^{0.667}\right)$$
 (5.2)

mit der Hilfsgröße B = $(5,15 \lg \text{Re}-4,64)^{-2}$

Gültigkeitsbereich: $2300 < \text{Re} < 10^6$; $d_i/L < 1$.

Neuere Aussagen im laminaren Bereich gehen auf SHAH, MARTIN, STEPHAN, GNIELINSKI zurück, die die abschnittsweise geltenden Nußeltbeziehungen, die teilweise aus numerischen Auswertungen stammen, in eine Gleichung für die mittlere NUSSELT-Zahl mit Gültigkeit für den gesamten Bereich überführten. So folgt nach [7] der jetzigen Auflage:

(5.3)

Nu =
$$\left\{3,66^{3} + 0,7^{3} + (1,615(\text{Re Pr } d_{i}/\text{L})^{0,333} - 0,7)^{3} + \left(\left(\frac{2}{1+22 \text{ Pr}}\right)^{0,167}(\text{Re Pr } d_{i}/\text{L})^{0,5}\right)^{3}\right\}^{1/3} (5.4)$$

Gültigkeitsbereich: Re < 2300; $0 < \text{Re Pr } d_i/L < \infty$.

Für den turbulenten Bereich erfolgten neue Auswertungen der bekannten Versuchsergebnisse, wobei auch ein stetiger Übergang zwischen den laminaren und den turbulenten NUSSELT-Zahlen hergestellt wurde. Dies dient einerseits der Beseitigung von numerischen Instabilitäten bei wärmetechnischen Berechnungen – beispielsweise Optimierungen – infolge wiederholter Sprünge zwischen Nu_{laminar} und Nu_{turbulent} im Übergangsbereich. Andererseits wird damit der Erkenntnis von ROTTA Rechnung getragen, der im Übergangsbereich Re > 2300 alternierende Umschläge der Strömungsform feststellte. GNIELINSKI schlägt nachfolgende Berechnung vor:

ausgebildete turbulente Strömung

Nu =
$$\frac{B \text{ Re Pr}}{1 + 12,7 B^{0.5} (Pr^{0.667} - 1)} \left(1 + \left(\frac{d_i}{L}\right)^{0.667} \right)$$
 (5.5)

mit der Hilfsgröße B = $(5,09 \text{ lg Re} - 4,24)^{-2}$ (5.6) Gültigkeitsbereich: $10^4 \le \text{Re} \le 10^6$; $0,6 \le \text{Pr} \le 1000$; $d_i/L \le 1$.

Übergangsbereich

Es wird eine lineare Interpolation zwischen $Nu_{laminar}(Re = 2300)$ nach Gl. (5.4) und $Nu_{turbulent}(Re = 10000)$ nach Gl. (5.5) vorgenommen, wobei gelten:

$$\gamma = \frac{\text{Re} - 2300}{10^4 - 2300} \tag{5.7}$$

$$Nu = (1 - \gamma) Nu_{laminar}(Re = 2300) + \gamma Nu_{turbulent}(Re = 10000)$$
(5.8)
Gültigkeitsbereich: 2300 < Re < 10⁴; 0,6 ≤ Pr ≤ 1000; d_i/L ≤ 1.

Die Linearisierung im Übergangsbereich ist umstritten, denn bei technisch realen Einströmbedingungen wird häufig eine beständige turbulente Strömung zu erwarten sein. Die Linearisierung kann natürlich auch mit den früheren Berechnungsgleichungen erfolgen, wobei als Grenzwert Re = 7000 vorgeschlagen wird. Damit gelten in diesem Übergangsbereich die nachfolgenden Zusammenhänge:

 $Nu_{laminar}(Re = 2300)$ nach Gl. (5.1) und $Nu_{turbulent}(Re = 7000)$ nach Gl. (5.2)

$$\gamma^* = \frac{\text{Re} - 2300}{7000 - 2300} \tag{5.9}$$

$$Nu = (1 - \gamma^{*}) Nu_{laminar}(Re = 2300) + \gamma^{*} Nu_{turbulent}(Re = 7000).$$
(5.10)

Im Bild 5.2 sind die unterschiedlichen Berechnungsansätze grafisch gegenübergestellt.

Anwendungsempfehlung: Die Abweichung zwischen den Gln. (5.8) und (5.10) ist unbedeutend gegenüber der ausgebildeten turbulenten Strömungsform nach Gl. (5.2). Somit kann Nu = f(Re) beispielsweise im Übergangsbereich bis Re \leq 7000 durch die Gl. (5.10) und darüber durch Gl. (5.2) approximiert werden. Der laminare Bereich sollte grundsätzlich vermieden werden. Würde ein Einsatz bei niedrigen Reynoldszahlen erfolgen, ist der Einfachheit halber Gl. (5.1) zu bevorzugen, da der Unterschied zu Gl. (5.4) ohnehin klein ist.

Bild 5.2 Gegenüberstellung der verschiedenen Nußeltgleichungen in Abhängigkeit von Re für einen ausgewählten Einsatzfall

Die Stoffwerte in den Nußeltgleichungen sind eigentlich auf die mittlere Fluidtemperatur zu beziehen. Da die Temperaturspreizung zwischen Ein- und Austritt in der Regel klein ist und um Iterationen zu vermeiden, wird programmintern die Fluidtemperatur am Sondenfuß t_{Umlenk} (Bild 5.3) verwendet. Geeignete Stoffwertapproximationen sind Tabelle 5.1 zu entnehmen.

Die Richtung des Wärmestromes hat normalerweise auch Einfluss auf den Wärmeübergang, da die Stoffwerte in der wandnahen Schicht gegenüber den mittleren Strömungswerten verändert sind. Als kennzeichnende Größe verwendet man meistens den Quotienten aus Pr bei der Fluidtemperatur t und Pr_W bei der Wandtemperatur t_W. Vereinfachend wird in [7] bei laminarer und turbulenter Strömung der gleiche Korrekturterm

$$Nu_{korr} = Nu \left(\frac{Pr}{Pr_{W}}\right)^{0,11}$$
(5.11)

angesetzt. In den üblichen Einsatzfällen für Erdwärmesonden wird die Korrektur jedoch unter 2 % bleiben. D. h., sie liegt im Genauigkeitsbereich von Nu.

Der Wärmeübergangskoeffizient zwischen Medium und Rohr folgt aus der Definitionsgleichung

$$\alpha_{\rm R} = \frac{{\rm Nu}\,\lambda}{{\rm d}_{\rm i}}.\tag{5.12}$$

Der Teilwärmedurchgangskoeffizient κ_R fasst den Wärmeübergangswiderstand und den Wärmeleitwiderstand in der Rohrwand zusammen. Er wird auf die Außenfläche des Rohres bezogen:

$$\kappa_{\rm R} = \left(\frac{d_{\rm a}}{\alpha_{\rm R} d_{\rm i}} + \frac{d_{\rm a}}{2 \lambda_{\rm R}} \ln \frac{d_{\rm a}}{d_{\rm i}}\right)^{-1} \,. \tag{5.13}$$

Für die eventuell gedämmten Vor- und Rücklaufrohrleitungen gelten analog:

$$\kappa_{\rm DV} = \left(\frac{d_{\rm DV}}{\alpha_{\rm R} d_{\rm i}} + \frac{d_{\rm DV}}{2 \lambda_{\rm R}} \ln \frac{d_{\rm a}}{d_{\rm i}} + \frac{d_{\rm DV}}{2 \lambda_{\rm D}} \ln \frac{d_{\rm DV}}{d_{\rm a}}\right)^{-1}; \quad \kappa_{\rm DR} = \left(\frac{d_{\rm DR}}{\alpha_{\rm R} d_{\rm i}} + \frac{d_{\rm DR}}{2 \lambda_{\rm R}} \ln \frac{d_{\rm a}}{d_{\rm i}} + \frac{d_{\rm DR}}{2 \lambda_{\rm D}} \ln \frac{d_{\rm DR}}{d_{\rm a}}\right)^{-1} (5.13a)$$

5.3 Wärmetransport in den Rohren

Die Rohrachsen sind in i-Richtung orientiert (siehe Bild 2.1). Die Rohrlänge beträgt L_{Sonde}, wobei mit der Abschnittshöhe Δh und der maximalen Abschnittszahl i_{Sonde} der Zusammenhang gilt: L_{Sonde} = Δh i_{Sonde}. (5.14)

Bei der Durchströmung des Rohres (w > 0) bleibt eine eventuelle Änderung der Wandtemperatur unbeachtet, d. h. ihre Wärmespeicherkapazität wird vernachlässigt und der gesamte Wärmestrom der Flüssigkeit zugeordnet. Eine weitere Vereinfachung stellt die Annahme dar, dass keine Wärmeleitung innerhalb der Flüssigkeit erfolgt. Diese ist gegenüber der relativ großen Mediengeschwindigkeit auch unbedeutend. Damit bewirkt die im Abschnitt i zugeführte Wärme eine eindeutige Änderung der Medientemperatur.

Die Medientemperaturen sind selbstverständlich in Abhängigkeit von der Durchflussrichtung zu ermitteln, weshalb zwischen Vor- und Rücklaufleitung zu unterscheiden ist.

Die Lage der Rohrleitungsabschnitte i und die Zuordnung der Temperaturen folgen aus Bild 5.3. Die zeitabhängige Eintrittstemperatur $t_{ein}(\tau)$ und der Massestrom in sind vorgegeben. Anstelle der Eintrittstemperatur kann auch ein zeitabhängig geforderter Wärmeentzug $\dot{Q}_{Sonde}(\tau)$ aus der Erdwärmesonde vorgegeben sein. Dies ist beispielsweise der Fall, wenn eine Wärmepumpe diesen benötigt. Die abschnittsweisen Wärmeströme an die Rohrabschnitte sind aus den Vor- und Rücklauftemperaturen sowie den Bohrlochwandtemperaturen unter Ansatz der Wärmeleitfähigkeit des Füllstoffes und der Teilwärmedurchgangskoeffizienten der Rohre mit Hilfe der Gln. (4.47) und (4.48) bestimmbar.

Bild 5.3 Vor- und Rücklaufrohrleitung mit Kennzeichnung der Abschnitte i und den zugehörigen Flüssigkeitstemperaturen sowie Wärmeströmen

Die Flüssigkeitstemperaturen werden dem jeweiligen Abschnittsbeginn zugeordnet. Die Bohrlochtemperaturen gelten näherungsweise in der jeweiligen Abschnittsmitte.

Mit Kenntnis des Massestromes in den Rohren ergibt sich der Wärmekapazitätsstrom $\dot{C} = c \dot{m}$. Damit können abschnittsweise die Flüssigkeitstemperaturen berechnet werden, wobei sich die Vor- und Rücklaufabschnitte gegenseitig beeinflussen und somit paarweise einzubeziehen sind.

Würde man die Berechnung mit dem Abschnitt i = 1 beginnen, wäre die Eintrittstemperatur in den Vorlaufabschnitt bekannt, nicht aber die in den Rücklaufabschnitt. Deshalb erfolgt die schrittweise Verfolgung der Medientemperaturen ausgehend von einer angenommenen Umlenktemperatur t_{Umlenk} , die am Sondenende anliegt. Von da aus folgen stets bezogen auf ein U-Rohr:

- Berechnung der Wärmeströme $\dot{Q}_{V}(iSonde)$ und $\dot{Q}_{R}(iSonde)$ mit t_{Umlenk} für den Vor- und Rücklaufabschnitt iSonde sowie der Bohrlochwandtemperatur t_{BL}(iSonde)
- Berechnung der Medientemperaturen

$$t_{V}(iSonde) = t_{Umlenk} - \frac{\dot{Q}_{V}(iSonde)}{\dot{C}}$$
(5.15)

$$t_{R}(iSonde) = t_{Umlenk} + \frac{\dot{Q}_{R}(iSonde)}{\dot{C}}$$
(5.16)

- Berechnung der Wärmeströme $\dot{Q}_V(iSonde-1)$ und $\dot{Q}_R(iSonde-1)$ mit $t_V(iSonde)$ und $t_R(iSonde)$ sowie der Bohrlochwandtemperatur $t_{BL}(iSonde-1)$
- Berechnung der Medientemperaturen

$$t_{V}(iSonde - 1) = t_{V}(iSonde) - \frac{\dot{Q}_{V}(iSonde - 1)}{\dot{C}}$$
(5.17)

$$t_{R}(iSonde - 1) = t_{R}(iSonde) + \frac{\dot{Q}_{R}(iSonde - 1)}{\dot{C}}$$
(5.18)

- Berechnung der Wärmeströme $\dot{Q}_V(1)$ und $\dot{Q}_R(1)$ mit $t_V(2)$ und $t_R(2)$ sowie der Bohrlochwandtemperatur $t_{BL}(1)$
- Berechnung der Medientemperaturen

$$t_{ein} = t_{V}(1) = t_{V}(2) - \frac{\dot{Q}_{V}(1)}{\dot{C}}$$
(5.19)

$$t_{aus} = t_{R}(1) = t_{R}(2) + \frac{\dot{Q}_{R}(1)}{\dot{C}} .$$
 (5.20)

Am oberen Rand der Erdwärmesonde ergeben sich zur angenommenen Temperatur t_{Umlenk} die Ein- und Austrittstemperaturen t_{ein} sowie t_{aus} , woraus auch die Sondenleistung

$$Q_{\text{Sonde}} = C \left(t_{\text{aus}} - t_{\text{ein}} \right)$$
(5.21)

berechenbar ist.

Je nachdem, ob die Flüssigkeitseintrittstemperatur t_{ein} oder die Leistung der Erdwärmesonde \dot{Q}_{Sonde} vorgegeben ist, muss eine Anpassung durch wiederholende Berechnungen des vorgestellten Ablaufs mit gezielt veränderter Temperaturannahme t_{Umlenk} erfolgen. Die Strategie zur Anpassung ist dem Programmlisting zu entnehmen.

6 Komplexmodell der Simulation von Erdwärmesonden

Anhand des Bildes 6.1, das auf Bild 2.1 basiert, soll verdeutlicht werden, welche wärmetechnischen Approximationen bestehen und welche Schnittstellen existieren, um dann die Verknüpfungen zwischen den Algorithmen zu verstehen.

6.1 Festlegungen der Randbedingungen

Da es sich um Simulationszeiträume handelt, die über mehrere Jahre reichen, wird generell angenommen, dass sich die wärmetechnischen Randbedingungen nur im Stundenrhythmus ändern.

• Temperatur an der Erdoberfläche

Generell gibt es zwei Möglichkeiten. Am einfachsten ist die Vorgabe einer ganzjährig konstanten Erdoberflächentemperatur t_{OF}. Wäre beispielsweise die Erdwärmesonde und ihr thermischer Einflussbereich von einem Raum überbaut, würde man die entsprechende Raumtemperatur benennen. Bei einer freien, unverschatteten Erdoberfläche nehmen die Lufttemperatur und vor allem die Sonnenstrahlung Einfluss auf den Wärmestrom ans Erdreich. Es ist rechentechnisch rationell, wenn es gelingt, die meteorologischen Elemente zu einer resultierenden Größe zusammenzufassen, die zum gleichen wärmetechnischen Ergebnis führt, wie das Wirken der Einzelgrößen. Bild 6.2 zeigt eine Prinzipdarstellung der vorgenommenen Superposition. Hierzu werden jedoch mehrere Vereinfachungen getroffen.

 So wird an der Erdoberfläche ein Gesamtwärmeübergangskoeffizient α_a, der die langwellige Umgebungsstrahlung und Konvektion zusammenfasst, angesetzt. Die absorbierte Sonnenstrahlung wird als erhöhte Lufttemperatur nachgebildet und behält das Modell der konvektiven Wärmeübertragung an der Erdoberfläche gedanklich bei.

Bild 6.2 Prinzipdarstellung der Superposition der Lufttemperatur und der Gesamtsonnenstrahlung zur Sonnenlufttemperatur (Links: Reale Einzelwirkungen; rechts: Superposition)

Dieses Vorgehen hat eine lange Tradition. Es wurde und wird bei den verschiedenen Verfahren der Kühllastberechnungen – beispielsweise nach VDI 2078 und auch nach ASHRAE HANDBOOK "FUNDAMENTALS" – verwendet. Zur Ermittlung der neuen Außenlufttemperatur muss die Absorption der kurzwelligen Sonnenstrahlung und der langwellige Strahlungsaustausch mit dem Himmelsgewölbe sowie der terrestrischen Umgebung ergänzt werden. In der ersten Form berücksichtigte MACKEY/WRIGHT nur die Absorption der kurzwelligen Strahlung und bildete die Sonnenlufttemperatur

$$t_{a}(\tau) = t_{L}(\tau) + \frac{a I_{gesamt}(\tau)}{\alpha_{a}}$$

$$t_{L}(\tau) ^{\circ} C$$

$$Lufttemperaturverlauf$$

$$a -$$

$$Absorptionskoeffizient für Sonnenstrahlung$$

$$I_{gesamt} W/m^{2}$$

$$Gesamtstrahlung auf die Oberfläche$$

$$\alpha_{a} W/(m^{2}K)$$

$$\ddot{a}ußerer Gesamtwärmeübergangskoeffizient.$$

$$(6.1)$$

In den neueren Darstellungen – ASHRAE HANDBOOK "FUNDAMENTALS"; 1993 – berücksichtigte man bei der Sonnenlufttemperatur die "langwellige Strahlung" mit einem Zusatzglied X:

$$t_{a}(\tau) = t_{L}(\tau) + \frac{a I_{gesamt}(\tau)}{\alpha_{a}} + X, \qquad (6.2)$$

wobei X = -3.9 K für Dächer und X = 0 K für vertikale Wände empfohlen werden. Eine bedeutend genauere Darstellung – die sogenannte kombinierte Außentemperatur bezogen auf Bauteiloberflächen – geht auf NEHRING zurück.

$$t_{ka} = t_{L}(\tau) + \frac{a\dot{I}_{gesamt}(\tau)}{\alpha_{a}} - \frac{\varepsilon C_{S}}{\alpha_{a}} \left\{ \left[\left(\frac{T_{Lm}}{100} \right)^{4} + \beta (t_{L}(\tau) - t_{Lm}) \right] \left[-e_{G} \varepsilon_{G} - e_{U} \varepsilon_{U} \right] \right\}$$
(6.3)

ε - Emissionskoeffizient der Bauteiloberfläche für langwellige Strahlung

 $C_S W/(m^2K^4)$ Strahlungskoeffizient des schwarzen Körpers ($C_S = 5,67 W/(m^2K^4)$)

 t_{Lm} ° C Tagesmittelwert der Außenlufttemperatur

T_{Lm} K Tagesmittelwert der Außenlufttemperatur (Absolutwert)

- β Temperaturfaktor zur Linearisierung des Strahlungsaustausches ($\beta \approx 1,05$)
- e_G Einstrahlzahl Bauteiloberfläche Himmelsgewölbe

- ϵ_G Emissionsgrad für langwellige atmosphärische Gegenstrahlung
- e_U Einstrahlzahl Bauteiloberfläche terrestrische Umgebung
- ϵ_U Emissionsgrad für terrestrische Umgebung.

NADLER übt an Gl. (6.3) Kritik, da diese nicht die langwelligen Reflexionen der Umgebung beinhaltet. Einzelheiten sind [8, Teil D] zu entnehmen. Für Horizontalflächen ist dieser Einfluss aber unwichtig.

Bei der Auswertung der Gln. (6.1) bis (6.3) ist der Koeffizient a/α_a von großer Bedeutung. Er ist nur in grober Näherung erfassbar. Für die Einzelwerte gelten relativ große Bereiche, wie [8, Teil D] verdeutlicht. Im vorliegenden Simulationsmodell finden näherungsweise die Gl. (6.1) sowie ganzjährig die Mittelwerte Wärmeübergangskoeffizient $\alpha_a = 15$ W/(m²K) und Absorptionskoeffizient a = 0,3 für die Solarstrahlung auf eine unversiegelte Fläche Anwendung. Diese Annahmen können selbstverständlich zur Diskussion gestellt werden.

Somit ist die Sonnenlufttemperatur nach Gl. (6.1) aus den Lufttemperaturen und Globalstrahlungen des zutreffenden Testreferenzjahres nach DIN 4710 für 8760 Stunden zu bilden und in einer Datei abzulegen. Dies kann vorab mit entsprechenden Hilfsprogrammen erfolgen. Für die Gesamtheit der zu simulierenden Betriebsstunden BS_{max} werden im Simulationsprogramm die stündlichen Sonnenlufttemperaturen $t_a(Jahr)$ des Testreferenzjahres aneinander gereiht, sodass $t_{oben}(BS = 1 ... BS_{max})$ als programminterne Größe durchgängig vorliegt.

• Temperatur an der Sohle des Simulationsgebietes

Die Sohle des Simulationsgebietes besitzt eine konstante Temperatur $t_{Erdsohle}$. Sie entspricht der ungestörten Erdreichtemperatur in der Tiefe L_{Sim} . Ist $L_{Sim} > 15$ m, so kann in der Regel kein jahreszeitlicher Verlauf mehr wahrgenommen werden, weshalb stets $L_{Sim} > 15$ m zu wählen ist.

• Flüssigkeitseintrittstemperatur und Sondenleistung

Welche der beiden Vorgaben für die Simulation relevant ist, bestimmt die Eingabe Anpass (Anpass = 1: Eintrittstemperatur; Anpass = 2: Sondenleistung).

Die Flüssigkeitseintrittstemperatur und die geforderte Sondenleistung können als Konstantwerte für die gesamte Simulationszeit gelten (Eingabe erfolgt in der Hauptprogrammoberfläche als T_{fix} bzw. \dot{Q}_{fix}) oder sie folgen einem Jahresverlauf (Eingabe in den Oberflächen "Flüssigkeitseintrittstemperatur" oder "Geforderte Sondenleistung" als FT(Monat, Stunde) bzw. F \dot{Q} (Monat, Stunde). Der Jahresgang wird aus je zwölf 24-Stunden-Tagesgängen, die für die Monate Januar bis Dezember repräsentativ sind, programmintern zusammengesetzt.

• Sondendurchfluss

Analog dazu wird mit der Vorgabe des Durchflusses verfahren. Der Volumenstrom pro Sonde kann als Konstantwert V_{fix} für die gesamte Simulationszeit oder als Jahresverlauf (Eingabe in der Oberfläche "Flüssigkeitsdurchfluss" als FV(Monat, Stunde)) gegeben sein. Der Jahresgang wird wiederum aus je zwölf 24-Stunden-Tagesgängen der Monate Januar bis Dezember programmintern gebildet. Der Durchsatz hat Steuerungsfunktion für den Sondenbetrieb. Ist dieser >0, dann wird während dieser Betriebsstunde der Sondenbetrieb untersucht.

• Datenzusammenstellung für den Sondenbetrieb

Um einen einfachen Programmablauf zu gewährleisten, werden die vorgenannten Betriebsdaten

(Flüssigkeitseintrittstemperatur oder geforderte Sondenleistung und Durchfluss), die nach der Eingabe konstant sind bzw. als Jahresverlauf vorliegen über die Betriebszeit BS_{max} in Form eindimensionaler Felder gebildet. Somit existieren: $T_{Sim}(BS = 1 \dots BS_{max})$ oder $\dot{Q}_{Sim}(BS = 1 \dots BS_{max})$ und $\dot{V}_{Sim}(BS = 1 \dots BS_{max})$.

Sicherheitshalber erfolgt für alle Betriebsstunden mit Sondendurchströmung $\dot{V}_{Sim}(BS = 1 ... BS_{max}) > 0$ eine Überprüfung, ob dafür bei Anpass = 1 auch $T_{Sim}(BS = 1 ... BS_{max}) > -273$ bzw. bei Anpass = 2 der Wert $\dot{Q}_{Sim}(BS = 1 ... BS_{max}) \neq 0$ gilt. Ist dies nicht der Fall, wird eine Datenergänzung gefordert.

6.2 Verknüpfung der Einzelalgorithmen zum Simulationsmodell

• Instationäre Simulation

Das im Bild 6.1 rot umrandete Gebiet hat die Form eines Hohlzylinders, der mit Erdreich ausgefüllt ist. In ihm wird stets eine instationäre Wärmeleitung simuliert. Der zugehörige Algorithmus und die Randbedingungen sind im Abschnitt 3 vorgestellt.

- Die Wärmetransporte an der Erdoberfläche und der Sohle sowie die adiabaten Begrenzungen am Zylindermantel und an der Bohrlochverlängerung sind in einfacher Weise zu realisieren.
- Eine Besonderheit stellt die Temperatur an der Bohrlochwand dar. Sie ist von der Zeit sowie von der Tiefe (Abschnitt i) abhängig und bildet die Schnittstelle zum eigentlichen Sondenbereich, dem Bohrlochinneren.
- Stationäre Simulation

Das Bohrloch mit Verrohrung und dem Füllstoff bildet die eigentliche Sonde. In ihr werden die wärmetechnischen Vorgänge quasistationär aufgefasst, d. h., eine Wärmespeicherung in der Bohrlochfüllung wird nicht betrachtet (Einzelheiten siehe Abschnitte 4 und 5).

- Die Bohrlochwandtemperatur t_{BL}(i) im Abschnitt i wird während eines Zeitschrittes als konstant betrachtet. Sie gilt unabhängig vom Drehwinkel φ innerhalb des Querschnittes, d. h. die Lage der Vor- und Rücklaufleitungen haben keinen örtlichen Einfluss auf die Bohrlochwandtemperatur.
- Nachdem der Zeitschritt im Erdreich simuliert wurde, erfolgt am Ende eines Zeitschrittes die stationäre wärmetechnische Betrachtung im Bohrloch. Da die "Zeit nicht weiter läuft", ist es in diesem Bereich bei Bedarf möglich, iterative Anpassungen durchzuführen. Dies betrifft die zunächst geschätzte Temperatur t_{Umlenk} am Sondenfuß. Sie wird solange variiert, bis die vorgegebene Flüssigkeitseintrittstemperatur t_{ein} \equiv T_{Sim}(BS) am Sondenvorlauf oder die geforderte Sondenleistung $\dot{Q}_{Sonde} \equiv \dot{Q}_{Sim}(BS)$ erreicht werden. Das detaillierte Vorgehen zur Anpassung an die Vorgabeparameter ist aus dem Programmlisting ersichtlich.
- Um die aufgeprägte Bedingung am Sondenanschlusspunkt (t_{ein} oder Q_{Sonde}) als Randbedingung an die Bohrlochwand weiterzugeben, wird mit den den Rohren zufließenden Wärmeströmen Q_V(i) und Q_R(i) unter Beachten der Anzahl der vorhandenen U-Rohre eine neue Bohrlochwandtemperatur analog zu Gl. (3.12) bestimmt:

$$t_{BL,i} = t_{i,k=1} - \frac{\ln \frac{r_{k=1}}{r_{BL}}}{2 \pi \lambda \text{Feld}_{i,k} \Delta h} \left(\dot{Q}_{V}(i) + \dot{Q}_{R}(i) \right) \times \text{Rohrzahl} .$$
(6.4)

Diese Temperatur gilt dann für den folgenden Zeitschritt, sodass man mit der Anpassung grund-

sätzlich einen Zeitschritt nacheilt.

Bei hoher Wärmeleitfähigkeit des Füllstoffes kann die wärmetechnische Ankopplung des Bohrlochs an das Erdreich zu numerischen Schwingungen führen. Deshalb wird zur Dämpfung nur die Hälfte der Änderung weitergegeben. Damit verzögert sich die genaue Anpassung der Bohrlochtemperatur um weitere Zeitschritte. Bei durchgehendem Sondenbetrieb ist diese Einschwingphase für den gesamten Simulationszeitraum bedeutungslos. Problematisch ist das Vorgehen aber bei intermittierendem Sondenbetrieb, da z. B. bei einer Zeitschrittweite von 10 Minuten und einem Sondenbetriebsrhythmus von einer Stunde nur sechs Anpassungen möglich sind. Entscheidend ist dabei stets die Wahl der Bohrlochwandtemperatur beim Sondenbetriebsstart. Die Auswertung zahlreicher Proberechnungen mit konstanter Sondenleistung während der Betriebsphasen – wie sie annähernd bei einer taktenden Wärmepumpe gefordert wird – ergab, dass es meistens vorteilhaft ist, wenn man die letzte verwendete Bohrlochtemperatur beim Start der neuen Betriebsphase unverändert wiederverwendet. Bei langen Betriebspausen – z. B. einer Sommerpause – können die nachfolgenden ersten Betriebsstunden jedoch zu einem fehlerbehafteten Temperaturfeld in Sondennähe führen.

Generell bietet die Schnittstelle t_{BL,i} noch Möglichkeiten für verbesserte Approximationen.

• Wärmebilanzen an den Rändern des Simulationsgebietes

Aus Bild 6.1 ist erkennbar, dass außer am Bohrlochrand an der Erdoberfläche und an der Sohle des Simulationsgebietes ein Wärmetransport zwischen Simulationsgebiet und Umgebung erfolgen kann. Am Mantel des Simulationsgebietes findet per Definition kein Wärmetransport statt. In einem Sondenfeld (Bilder 2.8 und 2.9) ist dies aus Symmetriegründen sofort einleuchtend. Bei einer Einzelsonde ist der Außenradius des Simulationsgebietes so groß zu wählen, dass der wärmetechnische Seiteneinfluss vernachlässigbar ist. Der Sonderfall einer starken seitlichen Wasserströmung wäre bei Bedarf noch ins Rechenprogramm zu integrieren.

Der Wärmestrom an der Bohrlochwand ist durch ($\dot{Q}_V(i) + \dot{Q}_R(i)$) × Rohrzahl bekannt. Aufgrund Gl. (6.4) besteht nach der beschriebenen Einschwingphase Identität mit dem Wärmestrom vom Radius k = 1 zur Bohrlochwand (Radius r_{BL}). Die Erfassung des Wärmestroms an der Erdoberfläche ist durch Gl. (3.15) bzw. an der Erdsohle durch die Gl. (3.16) gegeben. Die zugehörigen Wärmen ergeben sich durch Multiplikation mit $\Delta \tau$ und entsprechende Aufsummierungen der Zeitschritte über eine Stunde.

Speicherwärme im Simulationsgebiet

Das Feststellen der Speicherwärme hat hier nur eine Kontrollfunktion. (Dies ist beispielsweise bei Raumumfassungen anders, wo man mit der geforderten Raumtemperatur als Bezugstemperatur das verbleibende theoretische Leistungsvermögen der passiven Kühlung beurteilen kann.) Die Ermittlung erfolgt am Ende eines Simulationsjahres mit dem willkürlichen Temperaturbezug von -10 °C. Damit liegt man deutlich unter dem Gefrierpunkt. Selbstverständlich wird bei Bodenschichten mit Wasseranteil die Schmelzwärme des Eises berücksichtigt. Damit ergibt sich der Rechenalgorithmus für alle Volumenelemente i, k im Simulationsgebiet zu (Bezeichnungen in Anlehnung an Abschnitt 3.3, Index i berücksichtigt automatisch die unterschiedlichen Stoffwerte der Schichten):

$$t_{i,k} < 0: Q_{i,k} = C_{E,i,k} \cdot (t_{i,k} + 10) \quad (6.5) \qquad t_{i,k} = 0: Q_{i,k} = C_{E,i,k} \cdot 10 + Q_{Phase,i,k} \cdot Phase_{i,k} \quad (6.6)$$

imax kmax

$$t_{i,k} > 0: Q_{i,k} = C_{E,i,k} \cdot 10 + C_{Efl,i,k} \cdot t_{i,k} + Q_{Phase,i,k} \quad (6.7) \qquad \qquad Q_{Speicher} = \sum_{i=1}^{N} \sum_{k=1}^{N} Q_{i,k} \cdot (6.8)$$

Wegen des zeitverzögerten Einschwingens am Bohrlochrand und aufgrund der millionenfachen Rechenoperationen mit kleinsten Temperaturdifferenzen kann keine exakte Übereinstimmung mit der Summe der Einzelbilanzen während der Simulationsrechnung erwartet werden (Auswertung später!).

6.3 Programmablaufplan

Eingabe gemäß Maske: Hauptprogramm

- Geometrie der Erdwärmesonde und des Simulationsgebietes mit Diskretisierung
- Formfaktoren als Funktion des Übertemperaturverhältnisses Θ
- Dicke und Stoffwerte der Erdschichten
- Rohr- und Flüssigkeitsdaten
- Bedingungen des Sondenbetriebes (evtl. konstante Eintrittstemperatur oder konstante Wärmeleistung; evtl. konstanter Volumendurchfluss); unterbleiben die genannten Eingaben wird auf Zeitfunktionen für diese Eingabegrößen in gesonderten Eingabemasken zurückgegriffen
- Vorgabe für die Simulationsanpassung (Eintrittstemperatur oder Leistung)
- Anzahl der Simulationsstunden
- Randbedingung an der Erdoberfläche (Konstanttemperatur oder Sonnenlufttemperatur aus TRY)
- Konstante Sohlentemperatur in der Tiefe des Simulationsgebietes
- Eventuelle Eingabe der Erdreichtemperaturverteilung am Ende einer früheren Simulation

Eingabe gemäß Maske: Flüssigkeitseintrittstemperaturen

- Für jeden Monat (Januar bis Dezember) wird ein repräsentativer Tag mit 24 Stundenwerten für die vorhandene Flüssigkeitseintrittstemperatur (Vorlaufeintritt) benannt
- Eingabe ist nur erforderlich, wenn der Konstantwert in der Hauptmaske nicht ausgefüllt ist und die Anpassung der Flüssigkeitseintrittstemperatur erfüllt werden soll (Anpass = 1).

Eingabe gemäß Maske: Sondenleistung

- Für jeden Monat (Januar bis Dezember) wird ein repräsentativer Tag mit 24 Stundenwerten für die geforderte Wärmeleistung der Sonde (alle U-Rohre) benannt
- Eingabe ist nur erforderlich, wenn der Konstantwert in der Hauptmaske nicht ausgefüllt ist und die An passung an die geforderte Leistung erfüllt werden soll (Anpass = 2).

Eingabe gemäß Maske: Flüssigkeitsdurchfluss

- Für jeden Monat (Januar bis Dezember) wird ein repräsentativer Tag mit 24 Stundenwerten für den Flüssigkeitsdurchfluss der Sonde (alle U-Rohre) benannt
- Eingabe ist nur erforderlich, wenn der Konstantwert in der Hauptmaske nicht ausgefüllt ist.

Basisberechnungen zur Simulationsvorbereitung

- Aufbau des Geometriegitters mit den Laufvariablen i und k sowie den Größen Δh , r(1) ... r(kmax)
- Berechnung der Elementvolumina (Hohlzylinderringe)
- Zuordnung der Sondenlänge sowie der Erdschichten Sch = 1 ... Schmax zum Gitter
- Vorabberechnung konstanter Größen für die spätere elementweise Wärmestromermittlung
- Zuordnung der Schichtwerte an die Volumenelemente
- Ermittlung der zulässigen Zeitschrittweite $\Delta \tau$ unter Beachten des Stabilitätskriteriums und eines ganzzahligen Teilungsfaktors Intervallmax für 3600 s (Intervallmax × $\Delta \tau$ = 3600); als maximale Zeitschrittweite gilt $\Delta \tau$ = 600 s
- Vorabberechnung von Größen zum Rohrquerschnitt
- Füllung der Starttemperatur- und Phasenzustandsfelder (Gitterwerte) anhand eines Algorithmus ausgehend von der Sohlentemperatur oder aber mit einem bekannten Temperaturfeld einer früheren Simulation einschließlich der Vorgabe der Umlenktemperatur der Flüssigkeit am Sondenfuß
- Auswahl charakteristischer Gitterpunkte für die Ergebnisdarstellung

•	
 Simulation Aufbau von Zeitverläufen für alle Betriebsstunder Werten oder monatlich geltenden Mustertagen, di "Durchfluss" {Steuert gleichzeitig die Sondensimu "Eintrittstemperatur" {t_{ein}(BS)} oder "Sondenleistu "Sonnenlufttemperatur" {folgt aus dem Testrefere Kontrolle der zeitbezogenen Eingaben auf Vollstä 	$ BS = 1 \dots BS_{max} aus der Eingabe von konstanten ie die Betriebsbedingungen benennen: ulation! (Durchfluss = 0, Bohrlochwand adiabat)} ung" \dot{Q}_{sonde}(BS)}enzjahr}$
 Beginn der Stunden-Zeitschleife BS = 1 BS_{max} Einladen der Stundenwerte Ermittlung der Stoffwerte für die Flüssigkeit, und der Teilwärmedurchgangskoeffizienten f Sondenrohre (κ_{DV} sowie κ_{DR}) <i>Hinweis:</i> Es wird mit der mittleren Fluidtemp Sondenbetriebsstunde gerechnet, um den Rec 	des Wärmeübergangskoeffizienten im Rohr (α_R) für nackte (κ_R) und gedämmte Vor- und Rücklauf- peratur am Sondenfuß (t _{Umlenk}) der jeweils letzten chenaufwand zu begrenzen.
 Beginn der Δτ-Zeitschleife Intervall = 1 In Instationäre Temperaturfeldberechnung im E Berechnung der Wärmeströme in die und Wärmezunahme im Element Zuordnung der Elementwärme und neuer (Gefrieren bzw. Schmelzen von Wasser i Übernahme der neuen Temperatur am Er Bilden von Wärmesummen über die Betr Abspeichern ausgewählter Temperatur- u 	htervall _{max} Erdreich innerhalb des Simulationsgebietes d aus den Volumenelementen r thermischer Zustand mit und ohne Phasenwandel im Erdstoff) nde des Zeitschrittes $t(i, k) = tn(i, k)$ riebsstunde BS (Wert am Ende von BS) und Phasenfelder
 Stationäre Wärmetransportberechnung im Bo Rohrleitungen mit iterativer Einpassung der derter Sondenleistung {t_{ein}(τ) oder Q_{Sonde}(τ) Abarbeitung erfolgt nur bei vorhandenen 	ohrloch mit Hilfe der Formfaktoren und längs der Vorgabe Flüssigkeitseintrittstemperatur oder gefor- } n Sondenrohrdurchfluss
 Abarbeitung der i-Sondenabschnitte i = i Annahme der Flüssigkeitstemperatur Berechnung der Wärmeströme zwisc Bestimmung der Flüssigkeitstemperatur Iterative Anpassung an t_{ein}(BS) bzw. Bestimmung der neuen Bohrlochward bezogen auf t(i, 1) unter Berücksich Ende der stationären Wärmetransportberecht 	Sonde 1 r am Sondenfuß t_{Umlenk} chen Bohrlochwand und Sondenrohren aturen im Vor- und Rücklauf $t_V(i)$ und $t_R(i)$. \dot{Q}_{Sonde} (BS) ndtemperatur $t_{BL}(i)$ für alle Abschnitte $i = 1$ i_{Sonde} tigung eines Dämpfungsfaktors nung
 Speicherung ausgewählter Stundenwerte Ende der Δτ-Zeitschleife Intervall = 1 Inte Speicherung der Felder t(i k) Phase(i k) plu 	ervall _{max} 15 spezielle Sondenwerte für ausgewählte Simula-
 Ermittlung und Speicherung der Speicherwär Ermittlung und Speicherung der Speicherwär Ende der Stunden-Zeitschleife BS = 1 BS_{max} 	iebs- und Simulationsstunde; rme am Ende eines Simulationsjahres
- Ergebnisspeicherung	
Ausgabedruck - alle Eingaben sowie Ergebnisse des letzten Son- denbetriebs und der Monata /Jahrassummen	Ausgabegrafik - Temperaturen und Leistungen längs der Sonde zu ausgewählten Zeiten für maximal 10 Jahra

- Temperaturen der Sondenabschnitte sowie Temperatur- und Phasenfelder der Volumenelemente zu ausgewählten Zeiten für maximal 10 Jahre
- Temperatur- und Leistungsverläufe der Sonde sowie Temperaturverläufe im Sondenumfeld über die gesamte Simulationszeit

Die Zählweise der Betriebsstunden und der Intervalle ist aus Bild 6.3 ersichtlich. Daten am Ende einer Betriebsstunde entsprechen in Wirklichkeit denen dem Intervall_{max} zugeordneten Werten (z. B. Temperaturen, Leistungen usw.) bzw. den bis dahin innerhalb der Stunde gebildeten Summengrößen wie beispielsweise die Wärme an den Flüssigkeitsstrom).

Bild 6.3 Definition und Zählung der Betriebsstunden sowie der Intervalle innerhalb der Betriebsstunden

Hinweis: Selbstverständlich hätte die Definition der Betriebsstunde auch jeweils an den rechten Vollstundenrand rücken können. Dies wurde aber vermieden, da zu einer vollen Stunde der Eingabewert – beispielsweise der Durchfluss – sprungförmig geändert werden kann. Bei der derzeitigen Festlegung bleibt der Ausgangswert wenigstens eine Stunde konstant erhalten.

6.4 Komplexprogramm zur Simulation der Erdwärmesonden

Das lauffähige Programm ist wiederum in der Programmierumgebung VisualBasic.net (Standard) erstellt worden und steht zum kostenlosen Download bereit (siehe auch Abschnitt 7). Nachfolgend werden anhand der Programmoberflächen die Eingabedaten beschrieben.

Hauptprogramm

Bild 6.4 zeigt die Oberfläche des Hauptprogramms, die nach dem Programmstart erscheint. Sie dient der Dateneingabe für die zeitunabhängigen Größen und der Steuerung des Simulationsablaufes. Mit Hilfe der angeordneten Steuerelemente können alle Eingaben, Berechnungsabläufe und Ausgaben einschließlich der Öffnungen weiterer Bedienflächen ("Fenster") betätigt werden.

Um ein spezielles Beispiel bearbeiten zu können, ist der Button STARTEN zu drücken. Es erscheint dann das im Bild 6.5 dargestellte Fenster. Nach einer eventuellen Korrektur des Pfades – in dem sich das Beispiel befindet – wird mit OK bestätigt.

Nach dem Schließen des im Bild 6.5 gezeigten Fensters ist die Verbindung zum entsprechenden Ordner hergestellt. In ihm befinden sich bei einem bereits existierenden Beispiel die Dateien:

SPEICHER.dat	ZVERLAUFT.dat	ZVERLAUFQ.dat	ZVERLAUFV.dat
Eingaben; Hauptergebnisse	Vorgabe Eintrittstemperaturverlauf	Vorgabe Sondenleistungsverlauf	Vorgabe Durchflussverlauf
Speicherfeld.dat	Speicherfeld-aktiv.dat	Feb1.dat bis Feb10.dat	Okt1.dat bis Okt10.dat
Zustand am Simulationsende	Zustand am Ende des Sondenbetriebs	Zustand am 28. 2.; 23 Uhr; Jahr 110	Zustand am 31. 10.; 23 Uhr; Jahr 110

Wurde der Ordner vor Beginn des Programmstarts neu definiert, dann werden die genannten Dateien beim Füllen selbsttätig kreiert.

Die Felder in Maske 1 erscheinen mit einer neutralen Füllung. Durch DATEI LADEN können die Felder aber auch mit den Werten aus einer bereits bestehenden Datei – im Bild ist dies Beispiel – gefüllt werden. In beiden Fällen sind die Felddaten durch Überschreiben aktualisierbar. Die Speicherung aller angezeigten Daten wird durch Aktivierung des Buttons EINGABESPEICHERUNG in SPEICHER.dat bewirkt. Vorgeschaltet ist dabei eine Grobprüfung auf Vollständigkeit der Eingaben.

Von der Hauptoberfläche aus können auch die für die Eingabe der Zeitverläufe zuständigen Masken EINTRITTSTEMPERATUR, SONDENLEISTUNG und DURCHFLUSS durch die entsprechende Buttonaktivierungen aufgerufen werden. Sie werden später vorgestellt.

Schließlich sind von der Hauptoberfläche aus auch noch die Abläufe BERECHNUNG, DRUCK, T-/Phase-TABELLE, DIAGRAMM-SONDE und DIAGRAMM-UMFELD aktivierbar.

Die relevanten Ergebnisse werden wie die Hauteingabewerte in der Datei <u>SPEICHER.dat</u> eingelagert, sodass Eingaben und Ergebnisse eines Beispiels stets aktuell zueinander passen.

📕 Erdwärmesonde - Hauptprogra	amm			
Sondensimulation (Temperatur	feld im Erdreich instationär, im B	ohrloch stationär)	F:\SD\FE TGA\Erdwärmesor	nden\Beispiel\
Autor: Prof. DrIng. habil. Bernd Glück (V1/2008)				· · · · · · · · · · · · · · · · · · ·
Erdoberfläche Bohrloch mit Rohren	Hauptgeometriedaten	Schichtdaten und Bohrloch	hfüllmaterial	
Schicht i = 1	Bohrlochradius rBL 0 m	Schicht Rho kg/m ³	Lambda c W/(m K) J/(kg K)	rS TSch Lambda kJ/kg m Füllstoff
Sch = 1		fest	flüssig fest flüssig) W/(m K)
		Sch = 1 0		0 0 0 0
	Gedämmte LD 0 m	Sch = 2 0		0 0 0 0
Sch				
en datio	Länge ISonde 0 m	Sch = 3 0	0 0 0 0	0 0 0 0
		Sch = 4 0		0 0 0 0
2 r _{BL}	Anzahl der U-Rohre (1 oder 2)			
ē.		Sch = 5 0	0 0 0 0	0 0 0 0
Schicht Sch = Schmax	Länge LSim 0 m	Sch = 6 0		0 0 0 0
Sohle des Simulationsgebietes	imax 0			
Durchmesser des	Simulationsradius rEB 0 m	Sch = 7 0	0 0 0 0	0 0 0 0
	kmax 0	Sch = 8 0		0 0 0 0
Formfaktoren für die Bohrlochgeometrie a	ls Funktion des Übertemperaturverhältni	sses		
Beziehung für ungedämmten Rohrabschnit	tt: S20 = $0 + 0$ * THE	ETA S10 =	0 + 0 * THETA^(-1)	Definition:
Beziehung für gedämmten Rohrabschnitt:	SD20 = 0 + 0 * THE	TA SD10 =	0 + 0 * THETA^(-1)	HEIA = (tI - t0) / (t2 - t0)
Rohr- und Sondendaten			Daten zum Simulationsa	ablauf
Rohraussendurchmesser 0 mm	Wanddicke 0 mm Wärmel	eitfähigkeit 0 W/(m K) Beginn der Simulation: 1	I. Januar, 1. Stunde)
Dämmung: Dicke Vorlauf 0 mm	Rücklauf 0 mm Wärmel	eitfähigkeit 0 W/(m K)	mulationsstunden 8760
Durchflussmedium: C Tyfocor L 4	0 % • Tyfocor L 25 %	O Wasser	Konstante Erdoberfläche	entemperatur (Dfad + Datai):
Eintrittstemperatur °C oder	Leistung W Volum	enstrom //h		untemperatur (Flau + Dater).
Die Angaben gelten für die gesamte Simulationsze vorzunehmen. Die Leistung und der Volumenstror	eit. Sind diese Felder "blank", dann ist die Eingab n beziehen sich auf die komplette Sonde (1 oder	e unter ZEITVERLAUF 2 U-Rohre).	Linbeeinflusste Soblente	emperatur 273 °C
			Evtl. Eingabe der Erdrei	chtemperaturverteilung
Die Simulationsanpassung soll die gewüns	schte { C Eintrittstemperatur oder C	Leistung } sicherstellen.	einer vorhandenen Simu	lation (Pfad mit \ beenden):
Abläufe: 1. STARTEN drücken und Pfad bestätigen bzw. neu eingeben!	3. Bei Eingabe oder Korrektur der 5. Übe Werte bitte nur Zahlen Komma tur od	er ZEITVERLÄUFE Eintrittstemper er Leistungsanforderung und	a- Bei Eingabe von "blank" wird	l die vertikale Temperaturvertei-
2. Daten aus DATEI LADEN	Minuszeichen oder "Blank" verwenden! Durch	fluss eingeben!	lung für alle i ausgehend von mit der Temperaturreduzieru	n der Sohlentemperatur bei imax ung von 0,03 K/m nach oben
	Es erfolgt eine Grobkontrolle. oder [DIAGRAMM drücken!	ermittelt. t(i, k) gilt für alle Kre	eisringe k.
STARTEN DATEI LADEN EIN	GABESPEICHERUNG BERECH	NUNG Ergeb-	DRUCK DIAG	RAMM-SONDE
Zeitverläufe > DURCHFLUSS EIN		ISTUNG nisse >	/ Phase-TABELLE DIAG	RAMM-UMFELD BEENDEN

Bild 6.4 Hauptoberfläche (Maske 1) des Rechenprogramms "Erdwärmesonde" mit der Startfüllung von Daten, die durch das Laden einer bereits gefüllten Datei oder durch Einzeleingaben bzw. Korrekturen überschreibbar ist

Wichtige Eingabe:	×
Bitte den Pfad mit Ordner eingeben! Nicht die Datei benennen!	OK Abbr
F:\SD\FE_TGA\Erdwärmesonden\	Beispiel\

Bild 6.5 Fenster mit Vorschlag eines Pfades einschließlich Ordners für das Simulationsbeispiel

Nach einer eventuellen Korrektur wird mit OK bestätigt. Im Ordner befinden sich oder werden neu angelegt die Dateien: Speicher.dat; ZVerlaufT.dat; ZVerlaufQ.dat; ZVerlaufV.dat usw.

• Hauptprogrammeingabe und Steuerung des Programmablaufs (Bild 6.4)

Die nachfolgenden Bezeichnungen entsprechen den programminternen Namen. Sie dürften aber leicht mit den Maskenbezeichnungen erklärlich sein.

Hauptgeon	netriedaten	n (siehe Bild 6.1 oder Bildschirmmaske 6.4	4):						
rBL	m	m Bohrlochradius							
rEB	m	Simulationsradius							
LD	m	Gedämmte Sondenlänge (Es können Vor- und/oder Rücklauf mit einer Dän mung versehen werden. Die wärmetechnische Qualität der Dämmung wird durch die entsprechenden Formfaktoren quantifiziert.)							
LSonde	m	Sondenlänge (Tiefe bis zum Fußpunkt des U	-Rohres bzw. der U-Rohre)						
LSim	m	Tiefe bis zur Sohle des Simulationsgebietes ((simulierter Erdreichzylinder)						
imax	-	Anzahl der vertikalen Unterteilungen des Sir	nulationsgebietes						
kmax	-	Anzahl der horizontalen Unterteilungen des S konzentrischen Kreisringe)	Simulationsgebietes (Anzahl der						
Rohrzahl	-	Anzahl der im Bohrloch installierten U-Rohr	re (1 oder 2 Stück)						
Schichtdate	en und Bol	hrlochfüllmaterial (siehe Bild 6.1 oder Bil	dschirmmaske 6.4):						
Rho(Sch)	kg/m³	Dichte des Erdstoffes in der Schicht Sch (Es gefrorenem und ungefrorenem Boden getroff	wird kein Unterschied zwischen fen.)						
lam(Sch)	W/(m K)	Wärmeleitfähigkeit des gefrorenen Bodens							
lamfl(Sch)	W/(m K)	Wärmeleitfähigkeit des ungefrorenen Bodens	s (fl für flüssiges Wasser)						
c(Sch)	J/(kg K)	Spezifische Wärmekapazität des gefrorenen Bodens							
cfl(Sch)	J/(kg K)	Spezifische Wärmekapazität des ungefrorenen Bodens (fl für flüssiges Wasser							
rS(Sch)	kJ/kg	Phasenwandelwärme des homogenen Erde-Wasser-Gemischs (Schmelzenthalpie des anteiligen Wassers wird vereinfacht auf die Gemischmasse bezogen)							
TSch(Sch)	m	Tiefe der Schichtunterseite von der Erdoberf	läche						
lamS(Sch)	W/(m K)	Wärmeleitfähigkeit des Füllstoffs im Bohrloo se erfolgen; zur genauen Höhenanpassung ka schicht geteilt werden)	ch (Zuordnung kann schichtenwei- ann nötigenfalls eine reale Erd-						
Formfaktor	ren für die	Bohrlochgeometrie als Funktion des Über	rtemperaturverhältnisses						
a2; b2 a1; b1	-	Formfaktoren S20 und S10 für die Berechnur (4.23) bis (4.33) für nackte Sondenrohre	ngsgleichungen analog der Gln.						
a2D; b2D a1D; b1D	-	Formfaktoren S20 und S10 für die Berechnur (4.23) bis (4.33) für gedämmte Sondenrohre	ngsgleichungen analog der Gln.						
Rohr- und	Mediendat	ten							
da	mm	Außendurchmesser der Sondenrohre							
delR	mm	Rohrwanddicke							
lamR	W/(m K)	Wärmeleitfähigkeit der Rohrwand							
delDV	mm	Dämmdicke des Vorlaufs							
delDR	mm	Dämmdicke des Rücklaufs							
lamD	W/(m K)	Wärmeleitfähigkeit der Dämmung							
Fluessig- keit	-	 Durchflussmedium in den Sondenrohren: wässrige Lösung mit 40 % Tyfocor L wässrige Lösung mit 25 % Tyfocor L Wasser 	(programmintern: Fluessigkeit = 4) (programmintern: Fluessigkeit = 5) (programmintern: Fluessigkeit = 1)						

Tfix	°C	Konstante Flüssigkeitseintrittstemperatur während der gesamten Simulationszeit Falls Qfix gilt oder die Eintrittstemperatur zeitabhängig ist, "blank" eingeben (bitte kein Leerzeichen). {Für Zeitfolge Maske 2 verwenden!}							
Qfix	W	Geforderte, konstante Sondenleistung während der gesamten Simulationszeit Falls Tfix gilt oder die Sondenleistung zeitabhängig ist, "blank" eingeben (bitte kein Leerzeichen). {Für Zeitfolge Maske 3 verwenden!}							
Vfix	l/h	Konstanter Durchfluss durch die Sondenrohre (Angabe für 1 oder 2 U-Rohre) vährend der gesamten Simulationszeit (Vfix ≥ 0); Vfix > 0 sollte möglichst eine urbulente Strömung, mindestens aber eine Geschwindigkeit > 0,2 m/s in den Sondenrohren garantieren. Wenn Vfix > 0, muss auch Tfix oder Qfix einen sinnvollen Wert besitzen! Vfix = 0 dient zur Erdreichsimulation ohne Sondenbetrieb. Falls sich der Durchfluss in seiner Größe zeitlich ändert oder Unterbrechungen aufweist, "blank" eingeben (bitte kein Leerzeichen). {Für Zeitfolge Maske 4							
Anpass	-	Anpassung der Simulation soll gewährleisten:FlüssigkeitseintrittstemperaturSondenleistung	(programmintern: Anpass = 1) (programmintern: Anpass = 2)						
Daten zum	Simulatio	nsablauf							
BSmax	h	Anzahl der gewünschten Simulationsstunden							
tOF	°C	Konstante Erdoberflächentemperatur Bei einer Einhausung über dem Simulationsgeb Bei freier Fläche über dem Simulationsgebiet is nenlufttemperatur maßgebend, die als Datei ben "blank" einzugeben (bitte kein Leerzeichen).	iet gilt die Raumtemperatur. t die zeitlich veränderliche Son- annt werden muss. Für tOF ist						
Datei für	_	Wenn tOF = "blank", dann Pfad und Datei für S	onnenlufttemperatur benennen.						
Sonnen- lufttempe- ratur		Die Sonnenlufttemperatur $ta(\tau)$ sollte nach Gl. (Wärmeübergangskoeffizient $\alpha_a = 15$ W/(m ² K) zu der Absorptionskoeffizient a = 0,3 empfohlen. D balstrahlung ist dem für den Standort gültigen Te entnehmen. Die Datei muss 8760 Stundenwerte fi zember enthalten und von Visual Basic durch ein	6.1) gebildet werden, wobei der a verwenden ist. Weiterhin wird ie Lufttemperatur und die Glo- estreferenzjahr nach DIN 4710 zu für ta vom 1. Januar bis 31. De- nen Input-Befehl lesbar sein.						
tErdsohle	°C	Konstante Erdsohlentemperatur Die Temperatur muss mit der Tiefe der Sohle de menpassen. Es darf kein Oberflächeneinfluss m	es Simulationsgebietes zusam- ehr auftreten.						
Erdreich- tempera- tur- und Phasenfeld t(i, k) Phase(i, k)	-	Bei Beginn einer Simulation wird normalerweis allein aus tErdsohle und einem Temperaturgrad Soll eine bereits erfolgte Simulation mit gleiche gungen fortgesetzt werden, dann kann das zulet k), das stets automatisch unter Speicherfeld.dat eingelesen werden und als Starttemperaturverte Der Pfad ist anzugeben und mit \ zu beenden. Da her vom Programm erzeugt wurde, ist sie auch ko	e ein Temperaturfeld t(i, k) ienten von 0,03 K/m kreiert. en oder veränderten Randbedin- zt ermittelte Temperaturfeld t(i, gespeichert wird, wiederum ilung dienen. a die Datei Speicherfeld.dat vor- omplikationslos einlesbar.						

• Eingabe zeitlich veränderlicher Flüssigkeitseintrittstemperaturen (Bild 6.6)

Die Maske 2 ist nur auszufüllen, wenn ein zeitabhängiger Verlauf der Flüssigkeitstemperatur berücksichtigt werden soll (Tfix in Maske 1 ist "blank") und außerdem die Anpassung der Simulation an die vorgegebene Eintrittstemperatur gebunden ist (Anpass = 1).

Flüssigkeitseintrittstemperatur									
FT(Monat, Tagesstunde)	°C	Für jeden Monat wird ein repräsentativer Tag mit Stundenwerten gefüllt. Diese Werte gelten während der gesamten Stunde (Intervall = 1 bis Intervall _{max} nach Bild 6.3; es erfolgt keine Interpolation). Weiterhin gilt der Mustertag für den gesamten Monat.							

Eingabe: Flüssigkeitseintrittstemperaturen																												
Flüss	sigke	itsei	ntrit	tst	emp	erat	turer	n in '	°C											Pfa	d und	vorha	Indenei	bzw.	zukün	tiger D	ateina	me:
	-				•									Tage	sstur	nde				F:\SD	V\FE_1	GA\Er	dwärme	sonde	n\Beispi	el\ZVEF	RLAUFT	.dat
– Januar	1	2	3		4	5	6		7	8	9	10) 1	11	12	13	14	15	5	16	17	18	19	20	21	22	23	24
oundui																												
Februa	r																											
- März -					_										_	_				_	_							
	1					1										1												
April —																												
-Mai																												
_Juni —		1				_										_				_	_	1	1 [1	1 [1		
																					I							
-Juli —																												
August	_															_				_	_		· .		- I I			
						1										1												
Septen	nber –																											
Oktobe	er																			_								
Novem	ber —								- [
Dezem	ber –								— r					— r		_					_							
						1																						
ANZEIGE DATENS	EN drüc PEICH	ken! [ERUN	Daten ú G drück	iber: ken!	schrei	iben (i	nur Za	hlen, I	Komn	na, M	linusze	eichen)	l	L	MAS LEER	KE REN			SPE		GEN	G	KON	TROU	DRUC	жI	BEEM	NDEN 1
LVII. KUP	TROL	LDIVUC	at eize	Juge	a 11									_	_											··· _	0000	

Bild 6.6 Eingabeoberfläche für die Flüssigkeitseintrittstemperatur (Maske 2)

Das Ausfüllen der Oberfläche kann in eine leere Maske erfolgen, oder aber vorhandene Daten des Beispiels können überschrieben werden. Für die Stunden, in denen der Sondendurchfluss erfolgt, muss bei Anpass = 1 auch die Flüssigkeitseintrittstemperatur bekannt sein. Stundeneingaben während des Sondenstillstandes werden ignoriert, der besseren Übersicht wegen, sollten die Felder "blank" sein. Die Datenspeicherung erfolgt in der Datei ZVERLAUFT.dat.

• Eingabe zeitlich veränderlicher Sondenleistungen (Bild 6.7)

Die Maske 3 ist nur auszufüllen, wenn ein zeitabhängiger Verlauf der Sondenleistung zu beachten ist (Qfix in Maske 1 ist "blank") und außerdem die Anpassung der Simulation an die vorgegebene Sondenleistung gebunden ist (Anpass = 2).

Sondenleistung													
FQ(Monat, Tagesstunde) V	V Für jeden gefüllt. Di 1 bis Inter Weiterhin	Für jeden Monat wird ein repräsentativer Tag mit Stundenwerten gefüllt. Diese Werte gelten während der gesamten Stunde (Intervall = 1 bis Intervall _{max} nach Bild 6.3; es erfolgt keine Interpolation). Weiterhin gilt der Mustertag für den gesamten Monat.											
Eingabe: Sondenleistung													
Geforderte Sondenleistung in W													
(bezogen auf alle installierten U-Rohre)	789	10 11 12 13	14 15 16	D\FE_TGA\Erdwärmesonden\	21 22 23 24								
Januar													
Februar													
März													
April													
Mai													
August													
September													
Oktober													
November													
Dezember													
ANZEIGEN drücken! Daten überschreiben (nur Zah DATENSPEICHERUNG drücken!	len, Komma, Minuszeich	nen)! MASKE	DATENANZEI	GEN									
Evtl. KONTROLLDRUCK erzeugen!			DATENSPEICHE	KONTROLL	DRUCK BEENDEN								

Bild 6.7 Eingabeoberfläche für die geforderte Sondenleistung (Maske 3)

Das Ausfüllen der Oberfläche kann in eine leere Maske erfolgen, oder aber vorhandene Daten des Beispiels können überschrieben werden. Für die Stunden, in denen der Sondendurchfluss erfolgt, muss bei Anpass = 2 die Sondenleistung bekannt sein. Stundeneingaben während des Sondenstillstandes werden ignoriert, der besseren Übersicht wegen, sollten die Felder "blank" sein. Die Datenspeicherung erfolgt in der Datei ZVERLAUFQ.dat.

• Eingabe zeitlich veränderlichen Durchflusses (Bild 6.8)

Die Maske 4 ist nur auszufüllen, wenn ein zeitabhängiger Verlauf des Sondendurchflusses bzw. Stillstandszeiten auftreten (Vfix in Maske 1 ist "blank").

Sondendurchfluss											
FV(Monat, Tagesstunde)	l/h	Für jeden Monat wird ein repräsentativer Tag mit Stundenwerten gefüllt. Diese Werte gelten während der gesamten Stunde (Intervall = 1 bis Intervall _{max} nach Bild 6.3; es erfolgt keine Interpolation). Weiterhin gilt der Mustertag für den gesamten Monat. Durchflussangabe für 1 oder 2 Sondenrohre (Gesamtwert). Der Durchsatz sollte möglichst eine turbulente Strömung, mindestens aber eine Geschwindigkeit > 0,2 m/s in den Sondenrohren garantieren.									

Das Ausfüllen der Oberfläche kann in eine leere Maske erfolgen, oder aber vorhandene Daten des Beispiels können überschrieben werden. Die mit einem Wert belegten Stunden kennzeichnen den Sondenbetrieb. Sind Felder "blank", so erfolgt kein Sondendurchfluss. Die Simulation beschränkt sich dann nur auf den instationären Wärmetransport im Erdreich. Die Datenspeicherung erfolgt in der Datei ZVERLAUFV.dat.

Wäre Vfix $\neq 0$, so würde sich die Sonde im Dauerbetrieb befinden.

🔚 Eingabe: Durchfluss									
Flüssigkeitsdurchfluss in I/h		Pfad und vorhandener bzw. zukünftiger Dateiname:							
(bezogen auf alle installierten U-Rohre)	agesstunde	F:\SD\FE_TGA\Erdwärmesonden\Beispiel\ZVERLAUFV.dat							
1 2 3 4 5 6 7 8 9 10 11	12 13 14 15	16 17 18 19 20 21 22 23 24							
Februar									
März	,								
April	,								
Mai	, , , ,								
-Juni									
-Juli									
-August									
September									
Oktober									
November									
Dezember									
	DATENA	ANZEIGEN							
ANZEIGEN drücken! Daten überschreiben (nur Zahlen, Komma, Minuszeichen)! DATENSPEICHERUNG drücken!	LEEREN DATENOD								
Evti. KONTROLLDRUCK erzeugen!	DATENSPI	LIGHERONG RUNTROLLDRUCK BEENDEN							

Bild 6.8 Eingabeoberfläche für den Sondendurchfluss (Maske 4)

• Ausgaben (Druck- und Diagrammarten)

Die Zusammenstellungen der Eingabewerte sowie der Ergebnisse werden als MS WORD-Dateien an-

gezeigt. Sie können individuell geändert, gespeichert und ausgedruckt werden. Die Ausgaben sind selbsterklärend und anhand der Testbeispiele ersichtlich. Zusätzlich ist eine umfangreiche Grafikausgabe möglich.

Die entsprechenden Ausgabebutton sind im Hauptprogramm (Maske 1) angeordnet:

DRUCK liefert den Ausdruck aller Eingaben und der wichtigsten Sondendaten sowie aller monatlichen und jährlichen Summenwerte.

Bei intermittierendem Sondenbetrieb beziehen sich die Sondendaten auf den Zeitpunkt des letzten Sondenbetriebes, denn die Simulationszeit kann darüber hinaus gehen.

Für die Summengrößen in kWh gelten die folgenden Definitionen:

- "Sonnenwärme" ist die über die Erdoberfläche dem Simulationsgebiet zugeführte Energie
- "Erdwärme" summiert den Energiestrom von unten an das Simulationsgebiet
- "Sondenarbeit" stellt die Wärme an die Sonde dar
- "Bilanz" verkörpert "Sonnenwärme" + "Erdwärme" "Sondenarbeit" .

Zudem wird am Jahresende die Speicherwärme des Simulationsgebietes bezogen auf -10 °C ausgegeben. Sie beinhaltet – soweit vorhanden – auch die Phasenwandelwärme des Erdstoffes.

T-/Phase-TABELLE beinhaltet die Temperaturen der Sondenabschnitte (Vorlauf, Rücklauf, Bohrlochwand) sowie die Temperaturen und Phasen der Volumenelemente wahlweise Ende Februar bzw. Ende Oktober für maximal zehn Simulationsjahre und am Ende des Sondenbetriebes sowie am Simulationsende (Bilder 6.9 und 6.10). Dabei gilt als Monatsende jeweils die 23. Stunde, da zu dieser Zeit eventuell noch Sondenbetrieb herrscht.

📕 Druck des Ten	nperatur- / Phasenfeldes			
Auswahl des Dr	uckes	Temperatur	Phase	Pfad und Dateiname:
1. Simulationsjahr	Vorletzte Stunde des Februars	Ē		F:\SD\FE_TGA\Erdwärmesonden\Beispiel\
2. Simulationsjahr	Vorletzte Stunde des Februars			
3. Simulationsjahr	Vorletzte Stunde des Februars			Auswahl der zu druckenden Temperatur-
4. Simulationsjahr	Vorletzte Stunde des Februars			und/oder Phasenfelder vornehmen, indem
5. Simulationsjahr	Vorletzte Stunde des Februars			Haken in den CheckBoxen gesetzt werden!
6. Simulationsjahr	Vorletzte Stunde des Februars	V	V	
7. Simulationsjahr	Vorletzte Stunde des Februars			
8. Simulationsjahr	Vorletzte Stunde des Februars			
9. Simulationsjahr	Vorletzte Stunde des Februars			
10. Simulationsjahr	Vorletzte Stunde des Februars			
 Simulationsjahr 	Vorletzte Stunde des Oktobers			
2. Simulationsjahr	Vorletzte Stunde des Oktobers			
Simulationsjahr	Vorletzte Stunde des Oktobers			
Simulationsjahr	Vorletzte Stunde des Oktobers			
5. Simulationsjahr	Vorletzte Stunde des Oktobers			
Simulationsjahr	Vorletzte Stunde des Oktobers			
Simulationsjahr	Vorletzte Stunde des Oktobers			
8. Simulationsjahr	Vorletzte Stunde des Oktobers			
9. Simulationsjahr	Vorletzte Stunde des Oktobers			
10. Simulationsjahr	Vorletzte Stunde des Oktobers			
Letzte durchgeführte	Simulation mit Sondendurchfluss	s 🗖		
Letzte durchgeführte	Simulation			DRUCK BEENDEN

Bild 6.9 Auswahl des Druckes der Temperatur- und Phasenfelder

 OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\ERDWÄRMESONDEN\BEISPIEL\FEB6.DAT
 Bitte richten Sie die Tabellengestalt nach Ihren Wünschen ein!

 Z. B.: Querformat, Schriftgröße, Farbe usw.
 Z. B.: Querformat, Schriftgröße, Farbe usw.

 Temperaturen: Vorlauf tV, Rücklauf tR, Bohrlochwand tBL; Erdreich k = 1 ... 20 in °C zur Zeit 45215 Stunden

i tV tR tBL k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15 k=16 k=17 k=18 k=19 k=20

1 -9,	27 -7,37	-4,66	1,37	2,19	2,42	2,52	2,55
2 -9,	26 -7,37	-4,44	1,93	3,18	3,63	3,84	3,92
3 -9,	25 -7,38	-4,22	2,53	3,96	4,53	4,80	4,91
99 -8,	24 -8,19	-1,47	5,20	6,55	7,07	7,31	7,41
100 -8,	23 -8,20	-1,10	5,93	7,10	7,51	7,71	7,79
Ende de	er Sonde						
101 -		-	7,43	7,79	8,00	8,13	8,18
1.20			10.00	10.00	10.00	10.00	10.00
120 -		-	12,92	12,92	12,92	12,92	12,92

Temperaturen: Vorlauf tV, Rücklauf tR, Bohrlochwand tBL in °C; Phasenzustände des Erdreichs $k = 1 \dots 20$ in Werten 0 ... 1 zur Zeit 45215 Stunden

Phase = 0 gefrorener Boden; Phase = 1 ungefrorener Boden; Phase = 0 ... 1 teilgefrorener Boden; Phase = x Boden ohne Feuchteanteil

i	tV	tR	tBL	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10	k=11	k=12	k=13	k=14	k=15	k=16	k=17	k=18	k=19	k=20
1	-9,27	-7,37	-4,66	1,000	1,000	1,000	1,000	1,000															
2	-9,26	-7,37	-4,44	1,000	1,000	1,000	1,000	1,000															
3	-9,25	-7,38	-4,22	1,000	1,000	1,000	1,000	1,000															
4	-9,24	-7,38	-3,97	1,000	1,000	1,000	1,000	1,000															
5	-9,23	-7,39	-3,77	1,000	1,000	1,000	1,000	1,000															
6	-9,22	-7,40	-2,06	х	х	х	х	х															
99	-8,24	-8,19	-1,47	х	х	х	х	х															
100	-8,23	-8,20	-1,10	х	х	х	х	х															
Ende	e der S	Sonde																					
101	-	-	-	х	х	х	х	х															
120	-	-	-	х	х	х	х	х															

Bild 6.10 Musterausdruck eines Temperatur- und Phasenfeldes zur Kennzeichnung des Tabellenaufbaues und des Inhaltes

DIAGRAMM-SONDE führt zur grafischen Darstellung der Temperaturen und Leistungen der Sonde wahlweise Ende Februar bzw. Ende Oktober für maximal zehn Simulationsjahre und am Simulationsende bei Sondenbetrieb (Bild 6.11).

Bild 6.11 Musterdiagramm "Betriebsverläufe längs der Sonde" zur Kennzeichnung des Diagrammaufbaues und des Inhaltes am Beispiel der Temperaturen längs der Sonde im Abstand von neun Jahren

DIAGRAMM-UMFELD bewirkt die grafische Darstellung der Temperaturen und Leistungen der Sonde und der verwendeten Sonnenlufttemperatur sowie ausgewählter Erdreichtemperaturen für maximal zehn Simulationsjahre längs der Simulationszeit (Bild 6.12).

Anmerkung1: Die angebotenen Abstände vom Bohrloch sowie die Tiefen von der Erdoberfläche aus sind programmintern festgelegt. Sie betragen:

Tiefen: i0 = 1; i1 = Int(0,25 imax); i2 = Int(0,5 imax); i3 = Int(0,75 imax)

Radien: Bohrlochwand; k1 = Int(0.25 kmax); k2 = Int(0.5 kmax); k3 = Int(0.75 kmax); k4 = kmax.

Anmerkung2: Generell gelten die Stundendaten für das letzte Intervall (Intervallmax) der betrachteten Stunde (Beachte die Stundendefinition nach Bild 6.3). Deshalb beginnen die Kurvenverläufe zum Simulationsbeginn auch erst am Ende der ersten Simulationsstunde (Bild 6.12, Vergrößerung). Da bei intermittierendem Sondenbetrieb dann mitunter nur Punkte den Kurvenverlauf der Sondendaten charakterisierten, wird in diesem Fall der Endwert der Stunde auch am Stundenanfang verwendet und verbunden. Somit werden die Betriebszeiten der Sonde grafisch richtig dargestellt (Bild 6.13). Am Kurvenbeginn könnte die Temperatur oder die Leistung von der Realität abweichen. Hierzu sei aber angemerkt, dass die Transportzeiten im Sondenrohr und eventuelle Rohrbereiche mit abweichender Temperatur ("Pfropfen") beim wiederholten Durchflussbeginn ohnehin keine Beachtung finden. Die Sondenleistungen werden bei intermittierendem Betrieb nur für den Betriebsfall dargestellt, d. h., die Nullwerte bei Sondenstillstand entfallen ebenso, wie vertikale Verbindungslinien am Anfang und Ende des Sondenbetriebs.

Bild 6.12 Musterdiagramm "Betriebsverläufe der Sonde und des Sondenumfeldes über die Simulationszeit" zur Kennzeichnung des Diagrammaufbaues und des Inhaltes am Beispiel ausgewählter Temperaturverläufe während zehn Simulationsjahren (Vergrößerung: Kurvenverläufe beginnen am Ende der Simulationsstunde 1.)

Bild 6.13 Musterdiagramm "Betriebsverläufe der Sonde und des Sondenumfeldes über die Simulationszeit" zur Kennzeichnung des Diagrammaufbaues und des Inhaltes am Beispiel ausgewählter Temperaturverläufe während der ersten 24 Simulationsstunden

Während die Sonnenlufttemperatur erst am Ende der ersten Simulationsstunde angezeigt wird, erfolgt für die Sondentemperaturen und -leistungen die Rückverlängerung des Stundenendwertes über die gesamte Betriebsstunde gemäß Anmerkung 2.

- Hinweise zur Diagrammgestaltung
- Die Achsteilungen sind sehr variabel gestaltbar.
- Beide Achsteilungen können verändert werden. Dabei sind die Grenzwerte an der Abszisse und an der Ordinate sowie die Teilung der Ordinate zu überschreiben und durch Drücken des Buttons Grenzwertbestätigung zu fixieren. Wird dann einer der Buttons Betriebsverläufe in der Sonde, Temperaturverläufe oder Leistungsverläufe gedrückt, so erscheint das neue, veränderte Diagramm.
- Damit können Ausschnitte aus dem ursprünglichen Diagramm erzeugt oder aber die Ablesegenauigkeit verbessert werden.
- Wird die Achsteilung falsch eingegeben, sodass beispielsweise der linke Abszissenwert größer als der rechte Wert ist, erfolgt eine Fehlerausschrift.
- Will man zur ursprünglichen Anzeige gemäß der programminternen Achsteilung zurückkehren, dann ist der Button Originalmaßstab zu drücken und danach einer der Buttons Betriebsverläufe in der Sonde, Temperaturverläufe oder Leistungsverläufe zu aktivieren.
- Die Bilder auf dem Monitor können durch gleichzeitiges Drücken der Tasten "Alt" und "Druck"

kopiert werden. Mit dem Befehl "Einfügen" sind die kopierten Monitoranzeigen dann in WORDoder POWERPOINT-Dokumente übernehmbar. Dort können diese in bekannter Weise bearbeitet – z. B. beschnitten – werden.

Abschließend sei noch auf die erzeugbaren Kontrolldrucke in den Eingabeoberflächen für die Zeitfunktionen (Masken 2, 3 sowie 4) hingewiesen, die durch Aktivieren des jeweiligen Buttons KONTROLLDRUCK entstehen (Bild 6.14).

<i>0BJEK</i> Verlä	OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\ERDWÄRMESONDEN\BEISPIEL\ Bitte richten Sie die Tabellengestalt nach Ihren Wüns Verläufe der geforderten Sondenleistung (alle U-Rohre) in W Z. B.: Querformat, Schriftgröße, Fa												schen ein! Farbe usw.											
											Tages	stunde												
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Januar																								
				4000	4000	4000		4000		4000		4000		4000		4000		4000	4000	4000		4000		
Februar				4000	4000	4000		4000		4000		4000		4000		4000		4000		4000		4000		
März					4000	4000		4000		4000				4000		4000		4000		4000		4000		
					1000	1000		1000		1000				1000		1000		1000		1000		1000		

Bild 6.14 Musterkontrollausdruck einer Leistungseingabe gemäß Maske 3 (Bild 6.7)

7 Programminstallation und Hinweise zu Programmänderungen

Die beiden Rechenprogramme "ERDWÄRMESONDE" und "FORMFAKTOREN" stehen mit Beispielen zum kostenlosen Download bereit. Aus den beiden Programmlistings sind alle Module - gut strukturiert und mit zahlreichen Kommentaren versehen - ersichtlich, sodass eine Einarbeitung rasch möglich ist. Die Programmierung erfolgte in sehr einfacher Form, Anregungen zu eigenen Verbesserungen sind vielfach offensichtlich.

Erfolgt die Programmabarbeitung in der Programmierumgebung MICROSOFT VISUALBASIC.NET STANDARD, sind mögliche Fehlbedienungen und/oder noch vorhandene Programmfehler durch Nutzung des Debuggers relativ leicht auffindbar.

Auf jegliche Spezialsoftware, die einige wesentliche Programmiererleichterungen - beispielsweise bei der Erzeugung von Ausgabetabellen - bewirkt hätte, wurde bewusst verzichtet. Es werden lediglich Verbindungen zu MICROSOFT WORD hergestellt.

• Grundlagen für die Programmanwendung

Voraussetzung für die Programmnutzung sind die Betriebssysteme:

Microsoft Windows 2000 Professional mit Service Pack 4 oder

Microsoft Windows XP mit Service Pack 1.

Für beide Betriebssysteme werden zur Abarbeitung der vorliegenden Programme zusätzlich maximal zwei Dateien benötigt, die man unter http://www.microsoft.com/germany/default.aspx kostenlos downloaden kann

1. Datei: Microsoft® .NET Framework Ven	sion 1.1 Redistributable Package
---	----------------------------------

Quickinfo	Dateiname:	dotnetfx.exe
	Downloadgröße:	23709 KB
	Veröffentlichungsdatum:	22.05.2003
	Version:	1.1 bzw. 1.1.4322
Die Datei findet	man z. B. unter dem Suchbegriff: Net Fi	ramework

2. Datei: Sprachpaket Deutsch für Microsoft® .NET Framework Version 1.1

Quickinfo	Dateiname:	langpack.exe
	Downloadgröße:	1408 KB
	Veröffentlichungsdatum:	21.05.2003
	Version:	1.1
Die Datei findet ma	an z. B. unter dem Suchbegriff: Net Sp	rachpaket

Das Sprachpaket enthält deutsche Texte, z. B. Fehlermeldungen.

• Laden und Start der Rechenprogramme

Die Dateien stehen in den übergebenen Ordnern "Form" und "Sonde". Sie sind in ein eigenes Verzeichnis auf die Festplatte zu kopieren. In den genannten Ordnern sind die Rechenprogramme und je ein Simulationsbeispiel enthalten. Die entsprechenden Unterordner tragen die Namen:

- FORMFAKTOREN (Rechenprogramm zur Ermittlung der Formfaktoren)
- Variante C (Berechnungsbeispiel für Formfaktoren gemäß Seite 27 ff., Rechenzeit ca. 18 min)

- ERDWÄRMESONDE (Simulationsmodell für Erdwärmesonden)
- Beispiel_1 (Simulationsbeispiel f
 ür eine Erdwärmesonde gem
 äß Seite 62 ff., Rechenzeit ca. 6
 min) {Im Ordner "Beispiel_1" steht auch die Datei f
 ür die Sonnenlufttemperatur tSL.dat. Sie erscheint in der Hauptbedienoberfl
 äche als F:\Sonde\Beispiel_1\tSL.dat. Der blaue Teil des Pfades
 ist den realen Gegebenheiten des benutzten Computers anzupassen.}

Die Programmabarbeitung kann generell auf zweierlei Weise erfolgen.

I. Beispielhafte Abarbeitung ohne Entwicklungsumgebung:

Ordner "FORMFAKTOREN" öffnen \Rightarrow Datei "bin" öffnen \Rightarrow "Programm.exe" Doppelklick

II. Beispielhafte Abarbeitung mit Entwicklungsumgebung:

Visual Basic.NET starten \Rightarrow Menüleiste "Datei" \Rightarrow "Öffnen" \Rightarrow "Projekt" Einfachklick

 \Rightarrow Ordner "FORMFAKTOREN" auswählen \Rightarrow "Programm.sin" Doppelklick

```
\Rightarrow Menüleiste "Debuggen" Einfachklick \Rightarrow "Starten" Einfachklick
```

Zu Beginn wird in einem Fenster (Bild 6.5) ein Pfad für das zu bearbeitende Beispiel angegeben. Dieser Vorschlag ist in der Regel mit dem selbst gewählten Pfad zu überschreiben!

• Bearbeitung der Programmlistings

In den Ordnern "FORMFAKTOREN" UND "ERDWÄRMESONDE" sind alle Dateien mit den Quellcodes (Formen) enthalten. Die Auswahl der Formen kann mit Hilfe des Projektmappen-Explorers vorgenommen werden.

- Gliederung des Rechenprogramms "FORMFAKTOREN"

Form1.vb	Hauptprogramm mit Eingabe, Ablaufsteuerung und Ergebnisdruck
Form2.vb	Anzeige des Simulationsstandes während der Berechnung

- Gliederung des Rechenprogramms "ERDWÄRMESONDE"

Form1.vb	Hauptprogramm mit Haupteingabe, Ablaufsteuerung, Ergebnisdruck und Steuerung weiterer Druck- und Grafikausgaben
Form2.vb	Eingabe des Zeitverlaufes "Flüssigkeitseintrittstemperatur" mit Kontrolldruck
Form3.vb	Anzeige zum Simulationsstand in Stunden während der Berechnung
Form4.vb	Eingabe des Zeitverlaufes "Sondenleistung" mit Kontrolldruck
Form5.vb	Eingabe des Zeitverlaufes "Flüssigkeitsdurchfluss" mit Kontrolldruck
Form6.vb	Druck des Temperatur- und Phasenfeldes
Form7.vb	Grafik der Betriebsverläufe längs der Sonde
Form8.vb	Grafik der Betriebsverläufe der Sonde und des Sondenumfeldes über die Simulationszeit

8 Beispiele

8.1 Vorbemerkungen

Die nachfolgenden Beispiele arbeiten zwar mit praxisrelevanten Daten, sie verfolgen aber auch didaktische Ziele bezüglich des Erkennens und Wirkens der Randbedingungen auf die Ergebnisse. Generell bestehen immer große Schwierigkeiten, wenn unterschiedliche Sondenanordnungen und/oder Sondenbetriebsweisen über eine vorgegebene Nutzungsdauer objektiv verglichen werden sollen. Feldversuche sind in der Regel nicht nur wegen des großen Aufwandes sondern auch wegen der Nichtrealisierbarkeit absolut gleicher Randbedingungen untauglich.

Naheliegend ist es, den Vergleich mittels Simulationen durchzuführen. Hierbei ist es zwar leicht möglich, die Randbedingungen identisch zu gestalten, strittig bleiben aber immer die praxisbezogenen Annahmen. Die Randbedingungen sind deshalb ausführlich vorzustellen.

Wichtig ist vor allem auch die Zielaussage des Vergleichs. So könnte man z. B. den zeitlichen Leistungsverlauf einer Erdwärmesonde ermitteln, wobei z. B. die Wassereintrittstemperatur als Zeitfunktion vorgegeben ist. Für jeden Simulationsfall folgten dann abweichende Leistungen, die untereinander schwer zu bewerten sind, da sie die endgültige Nutzung beeinflussen usw. Deshalb wird von einer vorgegebenen spezifischen Entzugsleistung für Erdwärmesonde ausgegangen und unter sonst gleichen Bedingungen – wie z. B. Wetterdaten, Erdreich, Taktprofil der Wärmepumpe – die Wasseraustrittstemperatur bestimmt. Diese ist dann ein objektives Grundmaß für die Wirksamkeit des "Wärmequellsystems". Darauf aufbauend kann man für jede nachgeschaltete, beliebige Wärmepumpen- und Gebäudeheizanlage die spezielle Gesamteffizienz ermitteln.

• Erdreichmodellierung

Für die folgenden Beispiele werden zwei unterschiedliche Bodenarten verwendet.

Bodenart I: Sandboden mit Lehmanteilen und einem Wasseranteil von etwa 10 %(Vol)

Die Stoffwerte sind für den ungefrorenen und den gefrorenen Boden in Tabelle 8.1 angegeben, wobei die Volumenänderung bei der Eisbildung unbeachtet bleibt. Beim Phasenwandel wird ein homogenes Erde-Wasser-Gemisch angenommen und die Phasenwandelenthalpie des anteiligen Wassers deshalb vereinfacht auf die Gemischmasse bezogen.

Bodenart II: Festgestein ohne Wasseranteil

Die Stoffwerte gelten unabhängig von der Temperatur. Es tritt keine Phasenwandel auf, weshalb die Angabe für die Phasenwandelwärme r_s entfällt.

Bodenzustand	ρ	λ	с	r _s							
	kg/m³	W/(m K)	J/(kg K)	kJ/kg							
Bodenart I: Sandboden mit Lehmanteilen und einem Wasseranteil von etwa 10 %(Vol)											
ungefrorener Boden	1630	1,5	1046	20.5							
gefrorener Boden	1630	1,66	917	20,5							
Bodenart II: Festgestein ohne Wasseranteil	2400	2,6	900	0							

Tabelle 8.1 Mittlere Stoffwerte der modellierten Böden

Gestaltung der Erdwärmesonde

Zum Einsatz kommt eine 100 m lange Doppel-U-Rohrsonde gemäß Bild 4.10 mit PE-Rohre 25×2,3 und $\lambda_R = 0.35$ W/(m K).

Als Durchflussmedien werden Wasser und Tyfocor L 25 % nach Abschnitt 5.1 betrachtet. Die Durchflussgeschwindigkeit werde unterschiedlich gewählt. Im günstigsten Fall liegt turbulente Strömung vor. Die Wärmeleitfähigkeit des Bohrlochfüllstoffes ist stark produktabhängig, für die Beispiele wird $\lambda_{Füllstoff} = 1 \text{ W/(m K)}$ angenommen.

• Thermische Randbedingungen

An der Erdoberfläche gelten die Wetterdaten gemäß Testreferenzjahr für den Standort Kassel (TRY07) mit stündlichen Stützwerten. Die Lufttemperatur und die Globalstrahlung auf die Horizontalfläche werden zur Sonnenlufttemperatur $t_a(\tau)$ gemäß Abschnitt 6.1 zusammengefasst (Bild 8.1), sodass eine Randbedingung dritter Art vorliegt.

Bild 8.1 Sonnenlufttemperatur im Jahresgang gemäß Gl. (6.1) auf der Basis des Testreferenzjahres TRY 07

Ob der äußere Wärmeübergangskoeffizient $\alpha_a = 15 \text{ W/(m^2K)}$ und der Absorptionskoeffizient a = 0,3 für die Solarstrahlung auf die Erdoberfläche im Jahresmittel realistisch sind, kann nicht eindeutig beantwortet werden. Eine Testsimulation des Erdreichs der Bodenart I (Sondendurchfluss $V_{fix} = 0$) über 10 Jahre mit der in 15 m Tiefe geltenden Jahresmitteltemperatur für Kassel von 8,8 °C ergab eine relativ gute Übereinstimmung mit den mittleren Monatswerten nach DIN 4710 (Bild 8.2).

Bild 8.2 Gegenüberstellung der ungestörten Erdreichtemperaturen in ca. 1 m Tiefe gemäß Simulation (Basis: stündliche Sonnenlufttemperaturen nach Bild 8.1; Bodenart I) und monatlich gemittelter Messwerte

Die möglichst genaue Erfassung der meteorologischen Elemente an der Erdoberfläche ist wichtig, da der hauptsächliche Energieeintrag bei den betrachteten Sondentiefen und damit die angestrebte Nachhaltigkeit bei der Erdwärmesondennutzung durch die "Sonne" gegeben ist.

Die Randbedingung an der Sohle des Simulationsgebietes wird gemäß Abschnitt 6.1 als konstante Temperatur t_{Erdsohle} definiert, die der ungestörten Erdreichtemperatur in dieser Tiefe entsprechen soll. Die Tiefe des Simulationsgebietes endet 20 m unter dem Sondenende. Dies ist zunächst eine willkürliche Vorgabe. Die Beispiele zeigen später die Vertretbarkeit dieser Annahme. Als Temperaturgradient wird 0,03 K/m angenommen. Der realistische Wärmeeintrag von unten ist somit relativ klein, bei $\lambda_{Erd-reich} = 2,6$ W/(m K) beträgt er im ungestörten Feld nur 0,078 W/m². Die mittlere Jahrestemperatur für Kassel beträgt 8,8 °C. Sie spiegelt sich in der Regel in einer Tiefe von 15 ... 20 m wider, sodass in der Tiefe von 120 m die ungestörte Temperatur t_{Erdsohle} = 12 °C angesetzt wird.

Der Radius des Einflussgebietes wird variiert. Als Standard gelte für eine Sonde im Feld $r_{EB} = 10$ m.

• Wärmetechnische Sondenbelastung

Im Verlauf eines Jahres werden ca. 2000 (exakt 1997) Volllaststunden für den Betrieb einer Heizwärmepumpe angenommen. Sie sind identisch mit den Entzugsstunden eines konstanten, vorgegebenen Wärmestromes aus der Erdwärmesonde mit der mittleren Sondenleistung von 45 W/m. Die Wasserbzw. Soleeintrittstemperatur wird durch eine "Regelung im Simulationsmodell" (Anpass = 2) so eingestellt, dass die geforderte Wärmestromdichte während der Entzugsdauer eingehalten wird. Die Wärmepumpe arbeitet intermittierend (Mindestlaufzeit: 1 Stunde) auf einen Heizwasserspeicher. Die Nutzstunden sind über die Monate unterschiedlich verteilt. Die Festlegung erfolgte unter Berücksichtigung der mittleren Monatstemperaturen für Kassel gemäß DIN 4710 und unter Beachtung einer Heizgrenztemperatur von 15 °C sowie der möglichen Raumnutzung. Die angenommene Verteilung zeigt Tabelle 8.2.

r	1	1	1		1	1	1		1	r	r	1	1	r	1	1	1		1				1	r		
Tages-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Std/	Std/
stunde																									Tag	Mon
Jan					х	x	х		х		х		х		х		х		х	х	x		х		12	372
Feb					х	х	х		х		х		х		х		х		х		х		х		11	308
März						х	х		х		х				х		х		х		х		х		9	279
Apr							х		х		х						х		х		x				6	180
Mai							х												х						2	62
Juni																									0	0
Juli																									0	0
Aug																									0	0
Sep							х																		1	30
Okt							х		х								х		х		х				5	155
Nov						х	х		х		х				х		х		х		х		х		9	270
Dez					х	х	х		х		x		х		х		x		х		x		х		11	341
																						J	ahre	sstur	nden:	1997

Tabelle 8.2 Tages- und Monatsverteilung der Volllaststunden (= Entzugsstunden x)

Damit soll die 100 m lange Erdwärmesonde die Jahreswärme von $Q = 1997 \cdot 45 \cdot 100$ Wh/a = 8986,5 kWh/a liefern. – Weiterhin wird für einen Vergleichstest eine kombinierte Heiz-/Kühlsonde mit einer zusätzlichen "Kältenutzung" von Q = -5980 kWh während der Sommermonate untersucht.

8.2 Alleinige Heizwärmenutzung beim Sondenbetrieb (Beispiel 1)

Das Beispiel wird anhand der nachfolgenden Bilder, der Bildunterschriften und von Zwischentexten erläutert.

📕 Erdwärmesonde - Hauptprogr	amm										
Sondensimulation (Temperatur	feld im Erdreich instationär, im B	ohrloch stationär) 🛛 🕞	:\SD\FE TGA\Erdwärmesonden\Beispiel 1\								
Autor: Prof. DrIng. habil. Bernd Glück (V1/2008)		Ĺ									
Erdoberfläche Bohrloch mit Rohren	Hauptgeometriedaten	Schichtdaten und Bohrlochfü	Ilmaterial								
Schicht	Bohrlochradius rBL 0,075 m	Schicht Rho La kg/m³ W/ fest	mbda c rS TSch /(m K) J/(kg K) kJ/kg m flüssig fest flüssig	Lambda Füllstoff W/(m K)							
Schicht La	Gedämmte LD 0 m Sondenlänge	Sch = 1 2400 2,6 Sch = 2 0 0	2,6 900 900 0 120 0 0 0 0 0 0	1 0							
Sondenliking Sondenliking lees Simulatio	Länge LSonde 100 m	Sch = 3 0 0 Sch = 4 0 0	0 0 0 0 0 0 0 0 0 0 0	0							
	Anzahl der U-Rohre (1 oder 2) 2	Sch = 5 0 0	0 0 0 0	0							
Schicht Sch = Schmax Sohle des Simulationsgebietes	Länge LSim 120 m imax 120	Sch = 6 0 0		0							
Durchmesser des Simulationsgebietes 2 r _{EB}	Simulationsradius rEB 10 m	Sch = 7 0 0 Sch = 8 0 0									
Formfaktoren für die Bonriochgeometrie a Beziehung für ungedämmten Rohrabschni Beziehung für gedämmten Rohrabschnitt:	tt: S20 = $4,367$ + $-0,676$ * THE SD20 = 0 + 0 * THE	TA S10 = 4,367 TA SD10 = 0	+ [-0,676 • THETA^(-1) Definition: + 0 • THETA^(-1) THETA = (t1 - t0)	r (t2 - t0)							
Rohr- und Sondendaten			Daten zum Simulationsablauf								
Rohraussendurchmesser 25 mm	Wanddicke 2,3 mm Wärmele	witfähigkeit 0,35 W/(m K)	Beginn der Simulation: 1. Januar, 1. Stunde) Maximale Anzahl der Simulationsstunden	87600							
Dammung: Dicke voriaur 0 mm			Konstante Erdoberflächentemperatur	°C							
Eintrittatamperatur			Evtl. Laden der Sonnenlufttemperatur (Pfad +	Datei):							
			F:\SD\FE_TGA\Erdwärmesonden\Beispiel_	1\tSL.dat							
vorzunehmen. Die Leistung und der Volumenstro	n beziehen sich auf die komplette Sonde (1 oder	2 U-Rohre).	Unbeeinflusste Sohlentemperatur	12 °C							
Die Simulationsanpassung soll die gewüns	schte {	Leistung } sicherstellen.	Evtl. Eingabe der Erdreichtemperaturverteilung einer vorhandenen Simulation (Pfad mit \ been) den):							
Abläufe: 1. STARTEN drücken und Pfad bestätigen bzw. neu eingeben! 3. Bei Eingabe oder Korrektur der Werte bitte nur Zahlen, Komma, Minuszeichen oder "Blank" verwendenti oder Neueingabe vornehmen! 5. Über ZEITVERLÄUFE Eintrittstempera- tur oder Leistungsanforderung und Durchfluss eingeben! Bei Eingabe von "blank" wird die vertikale Temperaturvertei- lung für alle l ausgehend von der Sohlentemperatur bei imax mit der Temperatureduzierung von 0,03 Km nach oben ermittelt. t(i, k) gilt für alle Kreisringe k.											
STARTEN DATEILADEN EIN	IGABESPEICHERUNG BERECH	NUNG Ergeb-	DRUCK DIAGRAMM-SONDE								
Zeitverläufe > DURCHFLUSS EIN	TRITTSTEMPERATUR	ISTUNG nisse > T-/P	Phase-TABELLE DIAGRAMM-UMFELD E	EENDEN							

Bild 8.3 Hauptoberfläche (Maske 1) mit den Eingabedaten für Beispiel_1

Die Eingabedaten sind im Abschnitt 6.4 erläutert, Aussagen zu speziellen hier angenommenen Werten finden sich im Abschnitt 8.1. Der Ordner "Beispiel_1" ist vor dem Programmstart anzulegen. In diesem Fall wurde die Datei mit den Daten der stündlichen Sonnenlufttemperatur "tSL.dat" in den Ordner "Beispiel_1" kopiert.— Sie könnte aber auch an anderer Stelle stehen, wobei sie entsprechend zu benennen wäre.

- Die Sonnenlufttemperatur ist aus der Außenlufttemperatur und der Globalstrahlung f
 ür Kassel nach TRY 07 ermittelt.
- Die Simulationszeit erstreckt sich über 10 Jahre. Die Rechenzeit beträgt mit einem üblichen PC etwa 6 Minuten.
- Die Betriebszeiten der Sonde entsprechen der Tabelle 8.2. Sie finden sich in den Masken der Bilder 8.4 und 8.5 wieder.
- Als Wärmeträger wird eine wässrige 25 %-ige Tyfocorlösung verwendet, da Temperaturen unter 0 °C erwartet werden. Die Wärmeübergangskoeffizienten sind kleiner als bei reinem Wasser.

Province service se	Eing	abe	: D	urcł	nflu	SS																			_	
Image: Support and alle installierent U-Roberty Tages stunde FISDPE TGALEroby and support	Flüss	sigk	eits	dur	chf	luss	in l/h											Pfa	ad und	vorha	ndener	bzw. z	zukünft	iger D	ateinar	ne:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 210 22 23 24 Januar 2000	(bezog	en au	f all	e inst	tallie	rten L	J-Rohr	e)					Та	gessti	Inde			F:\S	D\FE_T	GA\Erd	lwärmes	sonden	Beispie	I_1\ZVE	ERLAUF	-V.dat
Januar 2000		1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Februar 2000	Januar						200	0 200	2000		2000		2000		2000		2000		2000		2000	2000	2000		2000	
Mirz 2000	Februa	r —					200	0 200	2000		2000		2000		2000		2000		2000		2000		2000		2000	
April 2000	– März –																									
April 2000	Widi Z							200	0 2000		2000		2000				2000		2000		2000		2000		2000	
Mai 2000	April —								2000		2000		2000						2000		2000		2000			
Juli Juli August August September 2000 2000 Oktober 2000 2000 2000 2000 2000 2000 2000 2000 Dezember 2000 2000 2000 2000 2000 Dezember 2000 2000 2000 Dezember 2000 2000 2000 2000 2000 Dezember 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	Mai			_			- [2000												2000					
Juli August September 2000 Oktober 00ktober 2000	-Juni —																									
Juli August August September September 2000 Oktober 2000 Oktober 2000 2000 2000		1												1		I				I						
August September Oktober Oktober 2000 2000 2000 <	-Juli —																									
September 2000	August]]																
Oktober 2000	Septem	nber																								
Oktober 2000									2000																	
November 2000	Oktobe	er —							2000		2000								2000		2000		2000			
Dezember 2000	Novem	ber -						200	2000		2000		2000				2000		2000		2000		2000		2000	
ANZEIGEN drücken! Daten überschreiben (nur Zahlen, Komma, Minuszeichen)! MASKE DATENANZEIGEN	Dezem	ber -																								
ANZEIGEN drücken! Daten überschreiben (nur Zahlen, Komma, Minuszeichen)! MASKE							200	0 200	2000		2000		2000		2000		2000		2000		2000		2000		2000	
	ANZEIGE DATENS	EN drü PEICI	icker HER	n! Da	iten ü drück	berscl en!	hreiben	(nur Zał	nlen, Kor	nma, N	linuszeic	hen)!		MAS	SKE		DATEN	ANZE	IGEN		KON	DOI -	DDUC	- 1	DEE	10 FM

Bild 8.4 Eingabeoberfläche (Maske 4) mit den zeitabhängigen Sondendurchsätzen für Beispiel_1

• Der nachfolgende Kontrollausdruck gibt das monatlich unterschiedliche Betriebsstundenschema der Tabelle 8.2 richtig wieder.

OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\ERDWÄRMESONDEN\BEISPIEL_1

Monatliche Verläufe des Flüssigkeitsdurchflusses (alle U-Rohre) in l/h

Tagesstunde																							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Januar				2000	2000	2000		2000		2000		2000		2000		2000		2000	2000	2000		2000	
Februar				2000	2000	2000		2000		2000		2000		2000		2000		2000	2000	2000		2000	
März				2000	2000	2000		2000		2000		2000		2000		2000		2000		2000		2000	
Mai 2					2000	2000		2000		2000				2000		2000		2000		2000		2000	
April						2000		2000		2000						2000		2000		2000			
Mai						2000		2000		2000						2000		2000		2000			
Juni						2000												2000					
Juli																							
August																							
Septembe	r																						
01-+						2000																	
OKLODEL						2000		2000								2000		2000		2000			
November					2000	2000		2000		2000				2000		2000		2000		2000		2000	
Dezember				2000	2000	2000		2000		2000		2000		2000		2000		2000		2000		2000	
				2000	2000	2000		2000		2000		2000		2000		2000		2000		2000		2000	

Eing	Eingabe: Sondenleistung																						_			
Gefo	rder	te S	onc	len	leis	tun	g in	w										Pfa	ad und	vorha	ndener	bzw. z	zukünft	iger D	ateinar	ne:
(bezog	en au	f alle	insta	allier	ten L	J-Roł	- nre)						Та	gesstu	inde			F:\S	D\FE_T	GA\Erc	dwärmes	sonden	Beispie	I_1\ZVE	RLAUF	Q.dat
	1	2		3	4		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Januar						4	500	4500	4500		4500		4500		4500		4500		4500		4500	4500	4500		4500	
Februa	r —					4	500	4500	4500		4500		4500		4500		4500		4500		4500		4500		4500	
Mörze																										
Widi Z								4500	4500		4500		4500				4500		4500		4500		4500		4500	
- April -									4500		4500		4500						4500		4500		4500			
Mai																										
									4500												4500					
– Juni —																										
-Juli —			- [
-August							_									_										
Septen									4500																	
-Oktobe	er —								4500		4500								4500		4500		4500			
Novem	ber -							4500	4500		4500		4500	[4500		4500		4500		4500		4500	
Dezem	ber -																									
						4	500	4500	4500		4500		4500		4500		4500		4500		4500		4500		4500	
ANZEIGE DATENS Evtl. KOM	EN drü PEICH NTROI	cken! IERUI	Dat NG d	en üb rücke erzeu	erscl en! igen!	hreibe	en (ni	ur Zahl	en, Kon	nma, N	linuszeic	hen)!		MAS	SKE REN		DATEN/	ANZE PEICH	IGEN ERUNC	G	KONT	ROLL	DRUCI	<	BEEN	IDEN

Bild 8.5 Eingabeoberfläche (Maske 3) mit den geforderten Stundenleistungen der Sonde für Beispiel_1

 Der Kontrollausdruck entspricht wiederum dem monatlich unterschiedlichen Betriebsstundenschema der Tabelle 8.2.

OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\ERDWÄRMESONDEN\BEISPIEL_1

Monatliche Verläufe der geforderten Sondenleistung (alle U-Rohre) in W

Tagesstunde																							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Januar				4500	4500	4500		4500		4500		4500		4500		4500		4500	4500	4500		4500	
Februar				4500	4500	4500		4500		4500		4500		4500		4500		4500	1000	4500		4500	
März				4000	4500	4500		4500		4500		4500		4500		4500		4500		4500		4500	
April						4500		4500		4500						4500		4500		4500			
Mai						4500												4500					
Juli																							
August																							
Septembe	er					4500																	
Oktober						4500		4500								4500		4500		4500			
November	r				4500	4500		4500		4500				4500		4500		4500		4500		4500	
Dezember	r			4500	4500	4500		4500		4500		4500		4500		4500		4500		4500		4500	

Ergebnisausdrucke und Grafiken des Beispiels

OBJEKTBEZEICHNUNG: F:\SD\FE TGA\ERDWÄRMESONDEN\BEISPIEL 1\ Rohr- und Bohrlochdaten: rBL da delR lamR delDV delDR lamD a2 b2 a1 b1 a2D b2D a1D b1D mm mm W/(mK) mm W/(mK) mm mm 75 25 0,0 0,000 4,367 -0,676 4,367 -0,676 0,000 0,000 0,000 0,000 2,3 0,35 0,0 Erdschichten: Schicht Dichte Wärmeleitfähigkeit Wärmekapazität Schmelz-Schicht-Wärmeleitfähigkeit flüssig fest flüssig Bohrlochfüllung fest wärme tiefe W/(mK) J/(kgK) kJ/(kg) W/(mK) kg/m³ m 900 900 120,0 1,00 1 2400 2,60 2,60 0,0 2 0 0,00 0,00 0 0 0,0 0,0 0,00 3 0 0,00 0,00 0 0 0,0 0,0 0,00 0,00 0,00 0,00 0 0 0 0,0 0,0 4 5 0 0,00 0,00 0 0 0,0 0,0 0,00 6 0 0,00 0,00 0 0 0,0 0,0 0,00 0,00 7 0 0,00 0 0 0,0 0,0 0,00 0,00 0,0 8 0 0,00 0 0 0,0 0.00 Sondendaten: Sondenlänge Abschnitte Flüssigkeit Eintritts-Sonden-Durchfluss U-Rohranzahl gesamt gedämmt gesamt gedämmt temperatur leistung °C W l/h m m 100,0 100 0 Z-funk. Z-funk. 0,0 Tyfocor L25 2 600 s Es erfolgt die Anpassung an die vorgegebene Sondenleistung! Zeitschrittweite: Daten zum Simulationsgebiet und zur Simulationszeit: Tiefe Radius imax kmax Oberflächentemperatur Erdsohlentemperatur Simulationszeit m °C °C m h 120,0 10,0 120 10 12,0 87600 Datei Sonnenlufttemperatur: F:\SD\FE TGA\Erdwärmesonden\Beispiel 1\tSL.dat Datei Erdreichtemperaturverteilung früherer Simulation: Werte des letzten Simulationszyklus bei Sondendurchfluss Letztes Intervall der Simulationsstunde: 87599 i tV(i) tR(i) tBL(i) QV(i) QR(i) °Ċ °Ċ °Ċ W W 1 -7,8 -5,8 -1,6 25,2 16,0 11 -7,7 -5,9 -0,4 29,7 21,5 -7,6 21 -6,0 -1,2 25,9 18,7 31 -7,5 -6,1 -1,4 24,3 18,0 -7,4 -1,6 17,9 41 -6,2 23,3 51 -7,2 -6,2 -1,6 22,9 18,3 -7,1 61 -6,3 -1,5 22,7 19,0 -7,0 -6,4 -1,3 71 22,8 20,0 -6,9 -6,5 -1,1 81 23,2 21,3 91 -6,8 -6,6 -0,7 24,3 23,3 Wärmeaufnahme Temperaturspreizung Bezug 1 U-Rohr Sonde Vorlauf Rücklauf Gesamt W W W Κ 1234 1003 4474 2,0

Monatswerte

Simulations- jahr	Monat	Sonnenwärme kWh	Erdwärme kWh	Sondenarbeit kWh	
1	1	-2733	18	1662	
1	2	-437	16	1376	
1	3	366	18	1258	

Simulation jahr	ns- Monat Sc	nnenwärme kWh		Erdwärme Sor kWh	ndenarbei kWh	t			
1	Λ	1/51		1.8	815				
1	-	3304		18	281				
1	6	2415		18	201				
1	7	1611		18	0				
1	8	1414		18	0				
1	9	-927		18	134				
1	10	-1139		18	693				
1	11	-2198		18	1206				
1	12	-1938		18	1523				
Ŧ	Jahressummen.	1190		215	8949	Bilanz	-7544	kWh	
	Speicherzustand	am Ende d		Jahres hezogen	auf =10	°C•	449340	kWh	
2	1	-1875		18	1663	0.	115510		
2	2	-368		17	1380				
2	3	354		19	1261				
2	4	1417		19	815				Kontrolle:
2	5	3265		20	281				449340 kWh
2	6	2379		19	201				(072 LWI
2	7	1576		21	0				-68/3 KWh
2	0	1303		21	0				= 442467 kWh
2	0	1303 1303		21	124				
2	9	-954		21	134				
2	10	-1163		22	693				
2	11	-2218		22	1206				
2	12	-1956		23	1524				
	Jahressummen:	1842		241	8956	Bilanz:	-68/3	kWh	
	Speicherzustand	. am Ende d	les	Jahres bezogen	auf -10	°C:	442471	kWh	◀──
3	1	-1889		23	1663				
•									
3	12	-1956		29	1524				
	Jahressummen:	1766		308	8955	Bilanz:	-6882	kWh	
	Speicherzustand	. am Ende d	les	Jahres bezogen	auf -10	°C:	435593	kWh	
4	1	-1889		30	1663				
4	12	-1952		36	1523				
	Jahressummen:	1795		389	8955	Bilanz:	-6771	kWh	
	Speicherzustand	am Ende d	les	Jahres bezogen	auf -10	°C:	428823	kWh	
5	1	-1884		37	1663				
5	12	-1945		44	1523				
	Jahressummen:	1861		476	8958	Bilanz:	-6622	kWh	
	Speicherzustand	am Ende d	les	Jahres bezogen	auf -10	°C:	422205	kWh	
6	1	-1877		45	1663				
-									
6	12	-1938		51	1523				
	Jahressummen:	1941		564	8956	Bilanz:	-6450	kWh	
	Speicherzustand	. am Ende d	les	Jahres bezogen	auf -10	°C:	415757	kWh	
7	1	-1869		52	1664				
7	12	-1930		59	1524				
7	Jahressummen.	2028		651	8959	Bilanz	-6279	kWh	
	Speicherzustand	am Ende d		Jahres hezogen	auf -10	°C.	409481	kWh	
8	1	-1861		59	1664	0.	10101	171411	
0	T	1001		55	1004				
•	12	-1922		66	1524				
0	Tahwagaumman.	2117		726	1024	Dilong	6106	hub	
		211/ 	1	/JO	0959	°C.	-0100	K.WII	
0	spercherzustand		les	Janres Dezogen	au1 =10	C:	403379	KWII	
У	Ţ	-1004		00	1004				
•	1.0	1015		7.5	1 5 0 4				
9	12	-1915		13	1524			1	
	Jahressummen:	2206		819	8956	Bilanz:	-5930	kWh	
	Speicherzustand	. am Ende d	les	Jahres bezogen	auf -10	-C:	397454	kWh	
10	1	-1846		73	1664				
•									
10	12	-1907		79	1524			_	
	Jahressummen:	2295		899	8959	Bilanz:	-5764	kWh	
	Speicherzustand	. am Ende d	les	Jahres bezogen	auf -10	°C:	391695	kWh	

- Der Bilanzwert (Wärmezufuhr von der Erdoberfläche und von der Sohle des Simulationsgebietes minus Sondenarbeit) nimmt jährlich ab, ist nach zehn Jahren aber noch deutlich negativ. D. h., das Erdreich im Simulationsgebiet erfährt noch eine kräftige Entspeicherung.
- Die jährliche Sondenarbeit schwankt zwischen 8949 kWh und 8959 kWh. Damit beträgt die

mittlere Sondenleistung 4481... 4486 W. Die programminterne "Leistungsregelung" arbeitet somit sehr gut, die geforderten 4500 W werden um weniger als 0,5 % unterschritten.

 Nach 10 Jahren beträgt die Herkunft der Erdwärmesondenarbeit: 64 % durch Erdreichabkühlung 10 % durch Wärmezufluss vom Erdinneren 26 % durch Wärmezufluss von der Erdoberfläche.

OBJEKTBEZEICHNUNG: F:\SD\FE TGA\ERDWÄRMESONDEN\BEISPIEL 1\FEB2.DAT

Temperaturen: Vorlauf tV, Rücklauf tR, Bohrlochwand tBL; Erdreich k = 1 ... 10 in °C zur Zeit 10175 Stunden

i	tV	tR	tBL	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
1	-4,72	-2,70	-1,06	2,00	2,45	2,60	2,67	2,70	2,73	2,74	2,75	2,76	2,76
2	-4,71	-2,71	-0,56	3,07	3,80	4,09	4,24	4,33	4,39	4,42	4,45	4,46	4,47
3	-4,70	-2,71	-0,18	3,90	4,78	5,16	5,37	5,50	5,59	5,65	5,68	5,70	5,71
4	-4,69	-2,72	0,19	4,70	5,70	6,14	6,40	6,57	6,68	6,75	6,80	6,82	6,83
5	-4,68	-2,72	0,53	5,41	6,51	7,01	7,31	7,50	7,62	7,70	7,76	7,79	7,80
50	-4,16	-3,07	1,18	6,72	7,97	8,55	8,90	9,13	9,28	9,39	9,45	9,49	9,51
99	-3,61	-3,56	2,00	8,45	9,78	10,32	10,63	10,82	10,94	11,02	11,07	11,10	11,11
100	-3,59	-3,57	2,23	8,94	10,08	10,52	10,76	10,92	11,02	11,08	11,13	11,15	11,16
Ende	e der :	Sonde											
101	-	-	-	10,15	10,51	10,75	10,91	11,02	11,10	11,15	11,19	11,21	11,21
102	-	-	-	10,70	10,83	10,95	11,05	11,13	11,18	11,22	11,25	11,26	11,27
103	-	-	-	10,99	11,05	11,11	11,17	11,22	11,26	11,28	11,30	11,31	11,32
119	-	-	-	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95
120	-	-	-	11,98	11,98	11,98	11,98	11,98	11,98	11,98	11,98	11,98	11,98

OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\ERDWÄRMESONDEN\BEISPIEL_1\FEB10.DAT

Temperaturen: Vorlauf tV, Rücklauf tR, Bohrlochwand tBL; Erdreich $\overline{k} = 1 \dots 10$ in °C zur Zeit 80255 Stunden

i	tV	tR	tBL	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
1	-8,06	-6,05	-2,63	1,72	2,34	2,53	2,62	2,67	2,70	2,71	2,73	2,73	2,73
2	-8,05	-6,05	-2,18	2,62	3,57	3,93	4,12	4,23	4,31	4,35	4,38	4,39	4,40
3	-8,04	-6,06	-1,82	3,34	4,46	4,93	5,19	5,35	5,46	5,52	5,57	5,59	5,60
4	-8,03	-6,07	-1,44	4,08	5,31	5,85	6,17	6,37	6,50	6,58	6,63	6,66	6,68
5	-8,02	-6,08	-1,11	4,75	6,06	6,66	7,01	7,24	7,39	7,48	7,54	7,58	7,59
50	-7,50	-6,46	-1,72	3,47	4,65	5,19	5,52	5,73	5,88	5,97	6,04	6,07	6,09
99	-6,97	-6,93	-0,26	6,33	7,69	8,25	8,56	8,75	8,87	8,95	9,00	9,03	9,05
100	-6,96	-6,94	0,04	6,93	8,09	8,54	8,79	8,95	9,05	9,12	9,16	9,18	9,19
Ende	e der S	Sonde											
101	-	-	-	8,26	8,62	8,87	9,03	9,15	9,23	9,28	9,32	9,34	9,35
102	-	-	-	8,91	9,05	9,17	9,27	9,35	9,41	9,45	9,47	9,49	9,50
103	-	-	-	9,31	9,37	9,43	9,49	9,55	9,58	9,61	9,63	9,64	9,65
119	-	-	-	11,82	11,82	11,82	11,82	11,82	11,82	11,82	11,82	11,82	11,82
120	-	-	-	11,94	11,94	11,94	11,94	11,94	11,94	11,94	11,94	11,94	11,94

- Die Temperaturverteilung im Erdreich im Abstand von 8 Jahren zeigt die deutliche Abk
 ühlung
 im mittleren und unteren Sondenbereich beispielsweise um 2 ... 3 K.
- An der Sohle des Simulationsgebietes steigt der Temperaturgradient von 0,03 K/m auf 0,12 K/m an. Obwohl sich der Anstieg des Gradienten stark erhöht und die Frage nach der Richtigkeit der Randbedingung einer konstanten Temperatur an der Sohle des Simulationsgebietes aufwirft, sei auf die Kleinheit des vertikalen Wärmestromes von 0,31 W/m² verwiesen.

Aussagen zu Bild 8.6:

- Deutlich zeigt sich die Temperaturabsenkung innerhalb von 8 Betriebsjahren. So sinkt die mittlere Soletemperatur beispielsweise um mehr als 3 K.
- Die vertikale Verteilung der Bohrlochwandtemperatur zeigt zunehmend den Einfluss der Wärmeströme von oben und unten ins Simulationsgebiet.
- Dies spiegelt sich auch in den Verläufen der abschnittsweisen Wärmestromaufnahme wider, wobei die Sondenleistung konstant bleibt.

Bild 8.6 Ausgewählte Betriebsverläufe (Ende Februar des 2. und 10. Simulationsjahres) über die Sondentiefe
rechts)

- Die sommerlichen Betriebspausen sind deutlich zu erkennen. Mit Beginn der Heizperiode sinken die Sole- und Bohrlochwandtemperaturen stark ab, im Frühjahr steigen sie aufgrund der verringerten Anforderung wieder etwas an. Eine offensichtliche Erholung tritt in der Sommerpause ein, da Wärme zur unmittelbaren Sondenumgebung fließt.
- Die dargestellten Bohrlochwandtemperaturen während der Betriebspausen sind unreal. Entsprechend Abschnitt 6.2 bleiben sie bei intermittierendem Sondenbetrieb während der Pausen unverändert, um die "numerische Einschwingphase" zu verkürzen. Dies erwies sich auch als zweckdienlich. Nach der langen Sommerpause jeweils zu Beginn der Heizperiode ergibt sich jedoch eine erneute Einfahrkurve. Die Bohrlochwandtemperatur nimmt während der Sondenbetriebspausen keinen Einfluss auf die Erdreichtemperaturverteilung.
- Sehr gut zu erkennen ist das langfristige Absinken der Soletemperatur. Die Änderung nimmt mit zunehmender Zeit erwartungsgemäß ab, was auf einen asymptotischen Endwert schließen lässt.

69

Bild 8.8 Ausgewählte Erdreichtemperaturen im Verlaufe von 10 Simulationsjahren Bild oben: Abstand 1,6 m, Tiefen variiert; Bild unten: Tiefe ca. 30 m, Abstände variiert

- Der Temperaturverlauf am Punkt 5 (0,5 m unter der Erdoberfläche) zeigt den deutlichen Einfluss der Sonnenlufttemperatur im Jahresgang.
- Die darunter liegenden Punkte 6, 7 und 8 in ca. 30 m, 60 m und 90 m Tiefe weisen auch eine Schwingung im Jahresgang auf. Sie ist aber nicht durch die meteorologische Randbedingung an der Erdoberfläche verursacht, sondern durch den Jahresgang der abgeforderten Sondenleistung. Die Frequenz der Sonnenlufttemperaturschwingung und die gegebenen Stoffwerte des Erdreiches bewirken eine so starke Amplitudendämpfung, dass in den betrachteten Tiefen praktisch keine Temperaturschwingung mehr merkbar sein kann.
- Die Temperaturverläufe in der Tiefe von ca. 30 m, wobei die Punkte 6, 10, 14 und 18 mit den Sondenabständen von 1,6 m, 4,5 m, 6,5 m und 9,5 m betrachtet werden, zeigen mit zunehmendem Abstand eine Amplitudenreduzierung und eine Phasenverschiebung. Die Jahresschwingung ist eindeutig durch den Jahresgang der Sondenleistung geprägt.

Die mittlere Temperaturabnahme beträgt während der zehn Betriebsjahre ca. 3 K. Dabei wird die Senkung auch am Rand des Simulationsgebietes (Radius des Einflussbereiches 10 m) deutlich. Das angenommene Sondenfeld erfährt somit eine merkliche Abkühlung. Würde es sich um eine Einzelsonde handeln, so müsste der radiale Einflussbereich r_{EB} bei der Simulation spürbar vergrößert werden.

Betri	ebsverläuf	e der Sonde	und d	es Son	denum	feldes i	iber di	e Simulati	onszeit		
Maßstabsär	nderung > Gr	enzwertbestätigung	Orig	jinalmaßst	ab		Pfad	und Dateina	me: F:\SD\FE_TGA\E	rdwär	mesonden\Beispiel_1\
Leistung	 sverläufe					So	ndenleistung	- magenta			
, ,						Wa	armestrom voi	erdsohle - blau			
L											
4500	and the second s	and I Independent	-	1 10100-00100	and the second s		-		to sensitive and the		and the second
w											
	=										
2250											
	<u> </u>										
	=										
	=										
			2100	0			429	00	65	700	Simulationsstunden 97600
			2190	10			400	00	007	00	
			-	Temperat	turverläuf	e *			Leistungsverläufe *	'	
	Maximal 8 Verla	iufe auswählen! Abstand vom Boh	rloch >	Wand	1.6	4,5	6,5	9,5 m	Sondenleistung		Zum Starten CheckBoxen Bitte min. und max. anklicken und darüber Simulationsstunden
Ordinate:	C Vorlauf	Erdreich:	0,5	🗖 1	5	9	🗖 13	🗖 17	Wärmestrom Erdoberfläd	che	befindlichen Button drücken! so wählen, dass eine gut lesbare
18	Rücklauf	Tiefe >	29,5	2	6	🗖 10	🗖 14	🗖 18	Värmestrom Erdsohle		* Funktion erst nach Abszissenteilung erfolgter Berechnung aktiv!
	Sonnen-	m Sonden-	59,5	П 3	7	1 1	1 5	🗖 19			
	tSL	tiefe m	89,5	□ 4	8 🗆	□ 12	□ 16	□ 20			BEENDEN

Bild 8.9 Sondenleistung und Wärmestrom an der Sohle des Simulationsgebietes in das Simulationsgebiet im Verlaufe von 10 Simulationsjahren

Bild 8.10 Sondenleistung, Wärmestrom an der Sohle des Simulationsgebietes und an der Erdoberfläche in das Simulationsgebiet im Verlaufe des letzten Simulationsjahres

- Die Sondenleistung entspricht während der Betriebszeit der Anforderung von 4500 W. Der Wärmestrom aus der Erdtiefe steigt ganz allmählich an, hat aber absolut gesehen nur geringen Anteil an der Wärmezufuhr ins Simulationsgebiet. Eine eventuelle Änderung der Randbedingung an der Sohle des Simulationsgebietes hätte keinen dominierenden Einfluss.
- Demgegenüber ist der Wärmestrom an der Erdoberfläche ins Simulationsgebiet beträchtlich.
 Somit muss die Randbedingung an der Erdoberfläche möglichst genau nachgebildet werden.

8.3 Variationen der Simulationsannahmen am Beispiel 1

Im Weiteren werden einige für die Simulation des Beispiels 1 getroffenen Annahmen gezielt geändert, um den Einfluss auf die Ergebnisse abschätzen zu können.

• Feinere Gitterteilung (Beispiel 1a)

Es wird eine doppelt so feine Gitterteilung wie im Ursprungsbeispiel gewählt. Die markanten Endergebnisse in Tabelle 8.3 zeigen als Hauptauswirkung am Ende der Simulationszeit von 10 Jahren eine Erhöhung der mittleren Soletemperatur um 0,7 K. Die Änderung der Wärmebilanzen ist marginal.

Die Unterschiede in der Soletemperatur resultieren vor allem aus der verfeinerten radialen Unterteilung. Die radialen Temperaturverläufe in 50 m Tiefe sind im Bild 8.11 gegenübergestellt.

Die Erdreichtemperaturen ab 1,5 m von der Bohrlochmitte nach außen sind bei den sehr unterschiedlichen Gitterteilungen deckungsgleich. Somit nimmt die Gitterteilung kaum Einfluss auf die Wärmebilanzen. Die hauptsächlichen Abweichungen ergeben sich bezüglich der Sole- und Bohrlochwandtemperatur. Somit wäre eine verfeinerte Gitterteilung in Sondennähe zu bevorzugen. Die Überlegungen im Abschnitt 2.1 führten zur derzeitigen Gittereinteilung.

Tabelle 8.3 Hauptergebnisse nach einer Simulationszeit von 10 Jahren bei Änderung der Gitterteilung und
der Zeitschrittweite im Vergleich (magentafarbene Einträge beziehen sich auf Beispiel 1)

		Beispiel 1	Beispiel 1a	Beispiel 1b
Gitterteilung	-	imax = 120 kmax = 10	imax = 240 kmax = 20	imax = 120 kmax = 10
Zeitschrittweite $\Delta \tau$	S	600	600	1200
Mittlere Soletemperatur am Sondenkopf zum Simulationsende	°C	-6,8	-6,1 0,7 K	-6,8 0,0 K
Jahressummen-Wärmebilanz nach 10 Simulationsjahren	kWh	-5764	-5750 0,2 %	-5760 0,1 %
Speicherzustand bezogen auf -10 °C nach 10 Simulationsjahren	kWh	391695	391518 0,0 %	391652 0,0 %

• Größere Zeitschrittweite (Beispiel 1b)

Auszüge aus den Ergebnislisten:

Nach programminterner Verstellung beträgt die Zeitschrittweite 1200 s statt 600 s. Wie die in Tabelle 8.3 eingetragenen Werte zeigen, wäre eine größere Zeitschrittweite problemlos anwendbar. Raschen Lastwechseln könnte dann jedoch nicht so schnell gefolgt werden.

• Tiefer liegende Sohle des Simulationsgebietes (Beispiel 1c)

Um die Wirkung der Randbedingung an der Sohle des Simulationsgebietes zu überprüfen, werde die Sohle von 120 m auf L_{Sim} = 220 m abgesenkt und dort die Temperatur um 3 K auf $t_{Erdsohle}$ = 15 °C erhöht.

Werte des letzten Simulationszyklus bei Sondendurchfluss Letztes Intervall der Simulationsstunde: 87599

°C °C W	W
1 -7,8 -5,8 -1,6 25,2	15,9
11 -7,7 -5,9 -0,3 29,6	21,4
21 -7,5 -6,0 -1,1 25,8	18,7
31 -7,4 -6,1 -1,4 24,2	17,9
41 -7,3 -6,1 -1,5 23,2	17,8
51 -7,2 -6,2 -1,5 22,8	18,2
61 -7,1 -6,3 -1,5 22,6	18,9
71 -7,0 -6,4 -1,3 22,7	19,9
81 -6,9 -6,5 -1,1 23,1	21,2
91 -6,8 -6,6 -0,7 24,1	23,2

Wä	irmeaufnahm	e	Temperaturspreizung
Bezug	1 U-Rohr		
Vorlauf	Rücklauf	Gesamt	
W	Ŵ	W	K
1229	999	4455	2,0

Die Sondenergebnisse gelten praktisch unverändert gegenüber dem Ursprungsbeispiel(Seite 65).

Simulatic jahr	ons- Monat	Sonnenwärme kWh	Erdwärme kWh	Sondenarbeit kWh			
1	12 Jahressummen	-1938 : 1190	18 <mark>215</mark>	1523 8949	Bilanz:	-7544	kWh
10	12 Jahressummen	-1907 : <mark>2296</mark>	18 <mark>215</mark>	1524 8959	Bilanz:	-6449	kWh

OBJEKTBEZEICHNUNG: $F:\D\FE_TGA\ERDWÄRMESONDEN\BEISPIEL_1C\FEB10.DAT$ Temperaturen: Vorlauf tV, Rücklauf tR, Bohrlochwand tBL; Erdreich k = 1 ... 10 in °C zur Zeit 80255 Stunden

i	tV	tR	tBL	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10	-
1 2	-8,12 -8,11	-6,09 -6,10	-2,66 -2,21	1,72 2,62	2,34 3,57	2,53 3,93	2,62	2,67	2,70 4,30	2,71 4,35	2,73 4,38	2,73 4,39	2,73 4,40	-
99 100	-7,03	-6,98 -6,99	-0,33	6,25 6,84	7,60 8,00	8,16 8,44	8,47 8,69	8,66 8,84	8,78 8,95	8,86 9,01	8,91 9,06	8,94 9,08	8,95 9,09	Vergleichswerte des Ursprungsbeispiels:
Ende	e der	Sonde				- /	- 1							
101	-	-	-	8,15	8,51	8,76	8,92	9,04	9,12	9,17	9,20	9,22	9,23	9,35
102	-	-	-	8,79	8,92	9,05	9,15	9,23	9,28	9,32	9,35	9,36	9,37	9,50
103	-	-	-	9,18	9,23	9,30	9,36	9,41	9,45	9,48	9,49	9,51	9,51	9,65
				10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	Erste merkbare Änderung
19/	-	-	-	13,09	13,09	13,09	13,09	13,09	13,09	13,09	13,09	13,09	13,09	$\Delta t = 0,03 \text{ K/m}$
158	-	-	-	13,12	13,12	13,12	13,12	13,12	13,12	13,12	13,12	13,12	13,12	$\Delta t = 0,04 \text{ K/m}$ gegenüber der natürlichen
159	-	-	-	13,16	13,16	13,16	13,16	13,16	13,16	13,16	13,16	13,16	13,16	$\Delta t = 0,03 \text{ K/m}$ Temperature chichtung
160	-	-	-	13,19	13,19	13,19	13,19	13,19	13,19	13,19	13,19	13,19	13,19	remperatursementung.
219	-	-	-	14,96	14,96	14,96	14,96	14,96	14,96	14,96	14,96	14,96	14,96	
220	-	-	-	14,99	14,99	14,99	14,99	14,99	14,99	14,99	14,99	14,99	14,99	

Die Auswertung ist aus Tabelle 8.4 ersichtlich.

- Am Ende des 1. Simulationsjahres ist die Jahreswärmebilanz identisch mit dem Ursprungsbeispiel (Seite 66).
- In den Folgejahren bleibt der Wärmestrom von unten in das nunmehr vergrößerte Simulationsgebiet jedoch unverändert. Damit erfolgt an der tiefer liegenden Sohle keine Veränderung der natürlichen Temperaturschichtung. Sie macht sich erst in einer Tiefe von ca. 158 m mit 0,01 K nach 10 Betriebsjahren bemerkbar. Entscheidend ist der Wärmestrom in das Simulationsgebiet am Sondenfuß bei 100 m Tiefe. Dort änderte sich die Erdreichtemperatur im Verlauf der 10 betrachteten Jahre um weniger als 0,1 K. Der für den Wärmestrom entscheidende Temperaturgradient änderte sich in dieser Tiefe praktisch nicht. Damit kann die willkürlich festgelegte Tiefe des Simulationsgebietes mit 120 m während der 10-jährigen Simulationszeit akzeptiert werden.
- Die Wärmeströme an der Erdoberfläche entsprechen im Verlaufe der 10 Simulationsjahre denen des Ursprungsbeispiels.
- Größerer Einflussbereich des Simulationsgebietes (Beispiel 1d)

Auszüge aus den Ergebnislisten:

Der Abstand der Sonden im Sondenfeld wird verdoppelt, sodass sich der Radius des Simulationsgebietes von $r_{EB} = 10$ m auf 20 m vergrößert.

Werte Letzte	des letzt s Interva	en Simula 11 der Si	ationszyklu imulationss	s bei Sc tunde:	ndendurc 87599	hfluss			
i	tV(i) °C	tR(i) °C	tBL(i) °C	QV(i) W	QR(i) W	-			
1 11 21	-4,6 -4,5 -4,3	-2,6 -2,7 -2,7	-0,2 1,6 1,2	21,6 29,0 26,4	10,3 19,0 17,5	-			
31 41 51 61	-4,2 -4,1 -4,0 -3,9	-2,8 -2,9 -3,0 -3,1	1,1 1,0 1,1 1,2	25,3 24,6 24,2 24,0	17,5 17,9 18,6 19,4				
71 81 91	-3,8 -3,7 -3,6	-3,2 -3,3 -3,4	1,3 1,4 1,6	23,9 23,9 24,2	20,4 21,6 23,0				
 Bezu Vorlau	Wärmeaufr g 1 U-Roh f Rückla	ahme ir Sonde iuf Gesan	Tempe e nt	raturspr	eizung	-			
W	W	W		K					
1257	973	4459	9	2,0					
Monats	werte					-			
Simul ja	ations- hr	Monat	Sonnenwärm kWh	e Erd	lwärme kWh	Sondenarbei kWh	t		
1	Jahr	12 ressummen:	-7903 : 3732		73 859	1524 8950	Bilanz:	-4359	k₩h
10	Jahr Spei	12 essummen: cherzusta	-8172 : 3142 and am Ende	des Jah	129 1484 ires bezo	1524 8957 ogen auf -10	Bilanz: °C:	-4330 1786766	kWh kWh

Die Gegenüberstellung der Ergebnisse zeigt Tabelle 8.4.

- Die mittlere Soletemperatur am Sondenkopf hat sich deutlich erhöht. Sie beträgt nach 10 Jahren -3,6 °C (Ursprungsbeispiel: -6,8 °C).
- Der Anteil der an der Erdoberfläche ins Simulationsgebiet eingetragenen Wärme bezogen auf die Sondenarbeit erhöhte sich auf 35 %, da sich der Einzugsbereich vergrößerte.

Bild 8.12 Vorlauf- und Rücklauftemperaturen am Sondenkopf sowie zwei Bohrlochwandtemperaturen (Bild oben) und ausgewählte Erdreichtemperaturen (Bild unten) im Verlaufe von 10 Simulationsjahren

- Vergleicht man die Kurvenverläufe im Bild 8.12 mit den analogen Kurven in den Bildern 8.7 und 8.8 (unten), so wird beim größeren Simulationsgebiet die schnellere asymptotische Annäherung an einen Endzustand deutlich.
- Einfluss der Starttemperaturverteilung (Beispiel 1e)

Bisher wurde zum Simulationsbeginn stets eine vertikale Temperaturverteilung im Erdreich nach Gl. (3.4) bestimmt. Diese stellt keine reale Verteilung des ungestörten Erdreiches dar, sondern dient lediglich als Starttemperaturfeld. Demgegenüber könnte auch eine Simulation zum Erzeugen von nahezu ungestörten Erdreichtemperaturen vorgeschaltet werden, wie sie zur Ermittlung für Bild 8.2 Verwendung fand. Beispielhaft wurde ausgehend von einer Verteilung nach Gl. (3.4) eine Simulation ohne Sondendurchfluss über 20 Jahre vorgenommen. Mit dem dann vorliegenden Temperaturfeld erfolgte die Simulation bei Sondenbetrieb über 10 weitere Jahre (Ergebniszusammenstellung nachfolgend und in Tabelle 8.4).

Auszüge aus den Ergebnislisten:

Werte des letzten Simulationszyklus bei Sondendurchfluss Letztes Intervall der Simulationsstunde: 87599

i	tV(i) °C	tR(i) °C	tBL(i) °C	QV(i) W	QR(i) W				
1 11	-7,5 -7,3	-5,5 -5,6	-1,4 -0,0	24,7 29,6	15,4 21,4				
21	-7,2	-5,6	-0,8	26,1	18,9				
31	-7,1	-5,7	-1,0	24,6	18,3				
41	-7,0	-5,8	-1,1	23,7	18,2				
51	-6,9	-5,9	-1,1	23,1	18,5				
61	-6,8	-6,0	-1,1	22,8	19,1				
71	-6,7	-6,1	-1,0	22,7	19,9				
81	-6,6	-6,2	-0,8	23,1	21,2				
91	-6,5	-6,3	-0,4	24,0	23,0				
Bezu	Wärmeaufr 1g 1 U-Roh	nahme nr Sonde	Tempe	ratursp	preizung				
W	W	W	lic	К					
1235	1004	447	7	2,0					
Monats	swerte								
Simul	ations-	Monat	Sonnenwärm	e Er	dwärme	Sondenarbe	it		
ja	ahr		kWh		kWh	kWh			
1	<u>.</u>	12	-2048		18	1524			
	Jahı Spei	ressummen Icherzusta	: 496 and am Ende	des Ja	215 hres bezo	8952 gen auf -10	Bilanz: °C:	-8242 460427	kWh kWh
10		12	-1925		77	1524			
10	, Jahı Spei	ressummen Lcherzusta	2080 and am Ende	des Ja	870 hres bezo	8958 gen auf -10	Bilanz: °C:	-6008 398626	kWh kWh

- Die mittlere Soletemperatur am Sondenkopf beträgt -6,5 °C. Sie zeigt gegenüber dem Ursprungsbeispiel von -6,8 °C nur eine geringe Veränderung. Dies betrifft nicht nur das Simulationsende sondern auch den zeitlichen Verlauf (vgl. Bilder 8.7 und 8.13, oben).
- Der Anteil der von oben aufgenommenen Wärme zur Sondenarbeit beträgt 23 %. Die Verringerung gegenüber dem Ursprungsbeispiel wird durch die höhere Erdreichtemperatur im oberen Bereich hervorgerufen.
- Die Erdreichtemperatur in 30 m Tiefe liegt zum Simulationsbeginn um etwa 1 K und am Ende noch um 0,5 K höher als bei Ursprungsbeispiel (vgl. Bilder 8.8 und 8.13, unten).

Bild 8.13 Vorlauf- und Rücklauftemperaturen am Sondenkopf sowie zwei Bohrlochwandtemperaturen (Bild oben) und ausgewählte Erdreichtemperaturen (Bild unten) im Verlaufe von 10 Simulationsjahren

		Beispiel 1	Beisp. 1c	Beisp. 1d	Beispiel 1e
Simulationsgebiet: Tiefe / Radius	m	120 / 10	220 / 10	120 / 20	120 / 10
Starttemperaturverteilung	-	Gl. (3.4)	Gl. (3.4)	Gl. (3.4)	20 Jahre Simulation ohne Sondenbetrieb
Mittlere Soletemperatur am Sondenkopf zum Simulationsende	°C	-6,8	-6,8 0,0 K	-3,6 3,2 K	-6,5 0,3 K
Wärmestromanteil von oben bezogen auf die Sondenarbeit nach 10 Simulationsjahren	%	26 %	26 %	35 %	23 %

Tabelle 8.4 Hauptergebnisse nach einer Simulationszeit von 10 Jahren bei Änderung des Simulationsgebietes und der Starttemperaturverteilung im Vergleich (magentafarbene Einträge beziehen sich auf Beispiel 1)

- Zusammenfassend kann festgestellt werden, dass in der Regel eine um 20 m tiefer liegende Sohle des Simulationsgebietes unter dem Sondenfuß und auch die einfache Annahme einer linearen Erdreichtemperaturverteilung nach Gl. (3.4) zum Simulationsbeginn ausreichend genau sind, um das wärmetechnische Verhalten der Erdwärmesonde beurteilen zu können.
- Der radiale Einflussbereich der Sonde sollte möglichst exakt erfasst werden. Dies ist bei einem geometrisch definierten Sondenfeld leicht möglich. Ansonsten werden Variantenrechnungen mit unterschiedlichen r_{EB} empfohlen.

8.4 Langzeitsimulation über 50 Jahre

Beispiel 1 ($r_{EB} = 10$ m) und Beispeil 1d ($r_{EB} = 20$ m) werden wiederholt für jeweils 10 Jahre abgearbeitet, wobei die Erdreich- und Sondendaten zu Beginn stets auf den Enddaten der Vorgängervariante aufbauen. Als markante Größen sind im Bild 8.14 die mittlere Soletemperatur am Sondenkopf und im Bild 8.15 die jährlich ins Simulationsgebiet eingetragene "Sonnenenergie" visualisiert.

Bild 8.14 Mittlere Soletemperatur am Sondenkopf im Verlauf von 50 simulierten Betriebsjahren Da beim Beispiel 1 ($r_{EB} = 10$ m) ein zeitlich starkes Absinken der mittleren Soletemperatur auftritt, wurde nach 30 Jahren der Sondendurchsatz verdoppelt, wodurch sich die Spreizung halbiert.

Bild 8.15 Jährlich an der Erdoberfläche zugeführte Wärmeenergie Die Starttemperaturverteilung macht sich stark bemerkbar, vor allem wenn eine große Oberfläche besteht. Dies wird bei $r_{EB} = 20$ m besonders deutlich. Aus diesem Grund wurde bei einer erneuten Simulation eine 10jährige Erdreichsimulation ohne Sondenbetrieb vorgeschaltet.

- Die Änderung der mittleren Soletemperatur nimmt mit der Zeit ab, dennoch liegt auch nach 50 Jahren noch kein stationärer Vorgang vor. Die Erhöhung des Durchsatzes wirkt sich positiv auf die Soletemperatur aus.
- Die an der Erdoberfläche zugeführte Energie wächst von Jahr zu Jahr. Betrug beim Beispiel r_{EB}
 = 10 m ihr Anteil nach 10 Jahren 26 % der Sondenarbeit, steigt dieser nach 50 Jahren auf 51 % an. Ein Zeichen dafür, dass letztlich die "Erdwärmenutzung" in den betrachteten Tiefen auch auf die "Sonnenenergienutzung" zurückzuführen ist.
- Da die Oberflächentemperatur die Energieaufnahme von oben sehr stark beeinflusst, macht sich die Starttemperaturverteilung außerordentlich lange bemerkbar. Verkürzend wirkt eine vorgeschaltete Simulation ohne Sondenbetrieb (Bild 8.15). Dieses Phänomen darf man aber nicht überbewerten, da der Wärmeaustausch zwischen Erdreich und Sonde davon kaum betroffen ist, wie die Verläufe der mittleren Soletemperatur (Bild 8.14) verdeutlichen.
- Beispiel 1 zeigt, dass die Sondenleistung von 45 W/m unter den genannten Betriebsbedingungen und dem Einflussbereich von r_{EB} = 10 m zu hoch angesetzt ist. Eine Möglichkeit besteht in der Vergrößerung des Sondenabstandes. Wirtschaftlich gestaltet sich vor allem eine kombinierte "Wärme-/Kältenutzung".

8.5 Kombinierte Wärme-/Kältenutzung beim Sondenbetrieb (Beispiel 2)

Im Weiteren wird aufbauend auf das Beispiel 1 eine veränderte Nutzung simuliert. Während die Wärmeentnahme im Heizfall gleich bleibt, wird im Sommer zusätzlich Wärme über die Sonde ins Erdreich gebracht. Sie kann beispielsweise aus der aktiven Bauteilkühlung oder aus Kälteprozessen

stammen.

Die im Beispiel 2 angenommenen zeitabhängigen Belastungen sind den nachfolgenden Kontrollausdrucken zu entnehmen.

OBJEKTBEZEICHNUNG: F:\SD\FE TGA\ERDWÄRMESONDEN\BEISPIEL 2\ Monatliche Verläufe der geforderten Sondenleistung (alle U-Rohre) in W

1	2	3	4	5	6	7	8	9	10	11	Tages: 12	stunde 13	14	15	16	17	18	19	20	21	22	23	24
Januar				4500	4500	4500		4500		4500		4500		4500		4500		4500	4500	4500		4500	
Februar				45.00	45.00	4500		45.00		45.00		45.00		4500		4500		45.00		4500		45.00	
März				4500	4500	4500		4500		4500		4500		4500		4500		4500		4500		4500	
3 m m i 1					4500	4500		4500		4500				4500		4500		4500		4500		4500	
Abrii						4500		4500		4500						4500		4500		4500			
Mai						4500												4500					
Juni						4500												4000					
Juli							-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000				
							-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000				
August							-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000	-5000				
September	r					4500																	
Oktober						4500																	
November						4500		4500								4500		4500		4500			
NOVEINDEL					4500	4500		4500		4500				4500		4500		4500		4500		4500	
Dezember				4500	4500	4500		4500		4500		4500		4500		4500		4500		4500		4500	

Monatliche Verläufe des Flüssigkeitsdurchflusses (alle U-Rohre) in l/h

1	2																						
-	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Januar				2000	2000	2000		2000		2000		2000		2000		2000		2000	2000	2000		2000	
Februar				2000	2000	2000		2000		2000		2000		2000		2000		2000		2000		2000	
März				2000	2000	2000		2000		2000		2000		2000		2000		2000		2000		2000	
April						0000										0000				0000			
Mai						2000		2000		2000						2000		2000		2000			
Juni						2000												2000					
Tuli							2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000				
ourr							2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000				
August							2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000				
September							2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000				
Oktober						2000																	
OKCODEL						2000		2000								2000		2000		2000			
November					2000	2000		2000		2000				2000		2000		2000		2000		2000	
Dezember					2000	2000		2000		2000				2000		2000		2000		2000		2000	
				2000	2000	2000		2000		2000		2000		2000		2000		2000		2000		2000	

Ergebnisausdrucke und Grafiken des Beispiels

0,35 0,0

75 25 2,3

OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\ERDWÄRMESONDEN\BEISPIEL_2\

0,0 0,000 4,367 -0,676 4,367 -0,676 0,000 0,000 0,000 0,000

Rohr-	Rohr- und Bohrlochdaten:													
rBL	da	delR	lamR	delDV	delDR	lamD	a2	b2	al	b1	a2D	b2D	a1D	b1D
mm	mm	mm	W/(mK)	mm	mm	W/(mK)								

Erdschic	hten:							
Schicht	Dichte	Wärmelei	tfähigkeit	Wärmel	kapazität	Schmelz-	Schicht-	Wärmeleitfähigkeit
	kg/m³	Iest ₩/	(mK)	J/	(kgK)	kJ/(kg)	m	W/ (mK)
1	2400	2,60	2,60	900	900	0,0	120,0	1,00
2	0	0,00	0,00	0	0	0,0	0,0	0,00

100,0	0,0	100	0	Tyfocor L25		Z-funk.	Z-funk.	2
m	m				°C	Ŵ	l/h	
gesamt	gedämmt	gesamt ge	edämmt		temperatur	leistung		
Sonde	nlänge	Abschni	tte	Flüssigkeit	Eintritts-	Sonden-	Durchfluss	U-Rohranzahl
Sonden	daten:							
8	0	0,00	0,0	0 0	0	0,0	0,0	0,00
7	0	0,00	0,0	0 0	0	0,0	0,0	0,00
6	0	0,00	0,0	0 0	0	0,0	0,0	0,00
5	0	0,00	0,0	0 0	0	0,0	0,0	0,00
4	0	0,00	0,0	0 0	0	0,0	0,0	0,00
3	0	0,00	0,0	0 0	0	0,0	0,0	0,00
-	0	0,00	°, °		0	0,0	0,0	0,00

Es erf	olgt die	Anpassung	an die v	orgegebei	ne Sondenle:	lstung!	Zeit	schrit	tweite:	600 s
Daten Tiefe m	zum Simul Radius m	lationsgeb s imax	iet und z kmax	ur Simula Oberfläd	ationszeit:_ chentemperat °C	tur Erds	sohlentempe °C	ratur	Simulat	ionszei h
120,0	10,0	120	10				12,0		876	00
Datei	Sonnenlui	fttemperat	ur: F:\SD	\FE_TGA\I	Erdwärmesond	den\Beispi	lel_1\tSL.d	lat		
Jacer . Wanta		cemperatur	tionerrich	y iluner	er Simuracio					
Letzte	s Interva	all der Si	mulations	stunde:	87599	LUSS				
i	tV(i) °C	tR(i) °C	tBL(i) °C	QV(i) W	QR(i) W					
1	-4,3	-2,3	-0,0	21,2	9,8					
11	-4,2	-2,4	1,9 1 F	29,4	19,2					
21	-4,1 -3 0	-2,4	1,5 1 /	20,8 25 7	17.0					
41 41	-3,9	-2,5	1 3	23,7	18 1					
51	-3 7	-2 7	1 4	24,5	18 7					
61	-3.6	-2.8	1,4	24.0	19.5					
71	-3,5	-2,9	1,5	23,8	20,4					
81	-3,4	-3,0	1,6	23,7	21,4					
91	-3,3	-3,1	1,8	23,9	22,8					
	Wärmeaufr	ahme	 Temp	eratursn						
Bezu	g 1 U-Rol	nr Sonde	+	erucurop	Let Zang					
W	W	W		K						
1261	974	4470		2,0						
Monats	werte									
Simul ja	ations- hr	Monat	Sonnenwär kWh	me Ero	dwärme So kWh	ondenarbei kWh	it			
1		1	-2733		18	1662				
•		12	-1967		18	1524				
-	Jahr	ressummen:	975		215	2989	Bilanz:	-180	0 kWh	
	Spe	lcherzusta	nd am End	e des Jal	nres bezogen	n auf -10	°C:	455092	2 kWh	
2		12	-2000		20	1524				
	Jahi Spei	ressummen: Lcherzusta	1394 nd am End	e des Jal	221 hres bezoger	2994 n auf -10	Bilanz: °C:	-137 45372	9 kWh 1 kWh	
	-				2					
• 7	Jahı	12 cessummen:	-2023 984		35 392	1524 2996	Bilanz:	-162	0 kWh	
	Spe	icherzusta	nd am End	e des Jal	nres bezoger	n auf -10	°C:	44558	5 kWh	

i	tV(i)	tR(i)	tBL(i)	QV(i)	QR(i)
	°C	°C	°C	W	W
1	-4,3	-2,3	-0,0	21,2	9,8
11	-4,2	-2,4	1,9	29,4	19,2
21	-4,1	-2,4	1,5	26,8	17,8
31	-3,9	-2,5	1,4	25,7	17,8
41	-3,8	-2,6	1,3	24,9	18,1
51	-3,7	-2,7	1,4	24,4	18,7
61	-3,6	-2,8	1,4	24,0	19,5
71	-3,5	-2,9	1,5	23,8	20,4
81	-3,4	-3,0	1,6	23,7	21,4
91	-3,3	-3,1	1,8	23,9	22,8

Simulation	ns- Monat So	nnenwärme	Erdwärme Sc	ndenarbeit	
jahr		kWh	kWh	kWh	
1	1	-2733	18	1662	
1	12	-1967	18	1524	
	Jahressummen:	975	215	2989 Bilan	z: -1800 kWh
	Speicherzustand	am Ende des	Jahres bezogen	n auf -10 °C:	455092 kWh
2	12	-2000	20	1524	
	Jahressummen:	1394	221	2994 Bilan	z: -1379 kWh
	Speicherzustand	am Ende des	Jahres bezogen	n auf -10 °C:	453721 kWh
•	10	0000	25	1 5 0 4	
/	12	-2023	35	1524	1 6 0 0 1 771
	Jahressummen:	984	392	2996 Bilan	z: -1620 kWh
_	Speicherzustand	am Ende des	Jahres bezogen	n auf -10 °C:	445585 kWh
8	12	-2022	37	1524	
	Jahressummen:	986	423	2995 Bilan	z: -1585 kWh
	Speicherzustand	am Ende des	Jahres bezogen	n auf -10 °C:	444008 kWh
• 9	12	-2022	40	1524	
	Jahressummen:	995	453	2994 Bilan	z: -1547 kWh
	Speicherzustand	am Ende des	Jahres bezogen	auf -10 °C:	442470 kWh
	Sperenerzabeana		Sames belogen		1121/0 1001
10	12	-2020	42	1524	
	Jahressummen:	1007	481	2993 Bilan	z: -1506 kWh
	Speicherzustand	am Ende des	Jahres bezogen	n auf -10 °C:	440974 kWh

Die jährliche Gesamtsondenarbeit liegt bei ca. 3000 kWh. Gefordert ist eine Heizarbeit von • $4500 \text{ W} \times 1997 \text{ h} = 8987 \text{ kWh}$ und eine Kühlarbeit von -5000 W × 1196 h = -5980 kWh. Damit verbleibt ein positiver Wärmeentzug von 3007 kWh, der durch die programminterne "Leistungsregelung" in sehr guter Näherung realisiert wird.

82

 Die von oben und unten in das Simulationsgebiet strömende Wärme ist aufgrund der Leistungskompensation (Heizen und Kühlen) näherungsweise halb so groß wie im Beispiel 1.

Bild 8.16 Vor- und Rücklauftemperatur am Sondenkopf und Bohrlochwandtemperatur (Ende Februar des 2. und 10. Simulationsjahres) über die Sondentiefe

 Im Zeitraum von 8 Jahren sank bei reinem Heizbetrieb die Soletemperatur um über 3 K ab (Bild 8.6), jetzt reduzierte sich der Wert auf <1 K.

Aussagen zu den Bildern 8.17 bis 8.19:

- Die Sohletemperaturen zeigen über 10 Jahre nur noch einen geringen Temperaturabfall, welcher sich im Heizfall negativ und im Kühlfall positiv bemerkbar macht (Bild 8.17). Die Ursache liegt an der nicht ausgeglichenen Wärmebilanz über das Jahr, da die Kühlarbeit nur etwa 2/3 der Heizarbeit beträgt. Vergleichend sollte das Bild 8.7 betrachtet werden, dass bei reinem Heizbetrieb einen sehr großen Temperaturabfall zeigt.
- Die Mittelwerte der Erdreichtemperaturen in ca. 30 m Tiefe (Bild 8.18) fallen in 10 Jahren um nur etwa 0,4 K ab. Als Vergleich dient das Bild 8.8 (unten).
- Bild 8.18 zeigt weiterhin sehr deutlich, wie die Temperaturschwingung, die von der wechselnden Sondenbelastung ausgeht, in radialer Richtung phasenverschoben und gedämpft ist.
- Bild 8.19 veranschaulicht die genaue Einhaltung der geforderten Sondenleistung. Außerdem wird nochmals der sehr geringe Wärmestrom von der Sohle in das Simulationsgebiet deutlich.

Bild 8.17 Vorlauf- und Rücklauftemperaturen am Sondenkopf sowie zwei Bohrlochwandtemperaturen in ca. 30 m und 60 m Tiefe im Verlaufe von 10 Simulationsjahren (Bild oben) bzw. im letzten Jahr (Bild unten)

Bild 8.18 Ausgewählte Erdreichtemperaturen in ca. 30 m Tiefe im Verlaufe von 10 Simulationsjahren

Bild 8.19 Heiz-/Kühlleistungsverlauf sowie Wärmestrom von der Erdsohle im 10. Simulationsjahr

8.6 Testbeispiel zur weiteren Demonstration der Simulationsmöglichkeiten

Es handelt sich hierbei um ein konstruiertes Beispiel, um die noch nicht vorgestellten Berechnungsmöglichkeiten hervorzuheben.

- Es wird eine einfache U-Rohr-Sonde nach Bild 4.7 betrachtet, deren Rücklaufleitung vom Sondenkopf ausgehend eine 5 m lange Wärmedämmung (Dicke 10 mm) besitzt.
- Die obere 12 m dicke Erdschicht entspricht nach Tabelle 8.1 der Bodenart I, die aufgrund des Wasseranteils gefrieren kann. Es folgen dann zwei unterschiedliche Festgesteinsschichten.
- Die in den bisherigen Beispielen verwendete Sonnenlufttemperatur wurde f
 ür alle Jahresstunden um 5 K abgesenkt. Die neue Datei tSL.dat befindet sich im Ordner "Testbeispiel".
- Vorgegeben sind zu den Betriebsstunden gemäß Tabelle 8.2 die stets konstanten Werte: Volumenstrom 1000 l/h (nur etwa 0,25 m/s) und Soleeintrittstemperatur -6 °C.

Ergebnisauszüge und Auswertung:

_ Rohr	– un	d Boh	rlochd	aten:			UDJEK	IDELEIUHI	VUIVG: P	-:\30\Fi	E_IGA\ERU	WARNE	DIVDEIV	EJIDEIJI
rBL	da	delR	lamR	delDV	delDR	lamD	a2	b2	al	b1	a2D	b2D	a1D	blD
mm	mm	mm	W/(mK) mm	mm	W/(mK))							
75	32	2,9	0,35	0,0	10,0	0,040	5,030	-1,272	5,030	-1,27	72 8,320	-2,064	1 5,542	-2,070
Erds	chic	hten:												
Schi	cht	Dich	te Wä	rmeleit	fähigke	eit N	Wärmeka	pazität	Schme	lz- S	Schicht-	Wärme	eleitfäh	igkeit
			f	est ,	flüss	ig :	fest	flüssig	wärm	e	tiefe	Bohı	clochfül	lung
		kg/m	3	W/(mK)		J/(k	gK)	kJ/(kg)	m		W/(mK)
1		1630	1	,66	1,50		917	1046	20,	5	12,0		1,00	
2		2200	2	,00	2,00		900	900	Ο,	0	40,0		1,00	
3		2400	2	,60	2,60		900	900	Ο,	0	120,0		1,00	
4		0	0	,00	0,00		0	0	Ο,	0	0,0		0,00	
5		0	0	,00	0,00		0	0	Ο,	0	0,0		0,00	
6		0	0	,00	0,00		0	0	Ο,	0	0,0		0,00	
7		0	0	,00	0,00		0	0	Ο,	0	0,0		0,00	
8		0	0	,00	0,00		0	0	Ο,	0	0,0		0,00	
Sond	enda	ten:_												
Son	deni	ange	Ab:	schnitt	е Ľ.	Lussig	keit	Eintritt	.s- S	onden-	- Durc	htluss	U-Ron	ranzah.
gesa	mt g	edamm	t gesa	mt geda	mmt			temperat	ur 1	eistur	ıg	. /.		
m		m						- C		W		l/h		
100,	0	5,0	100	5	T	yfocor	L25	Z-funk.			Z-f	unk.		1
Es e	rfol	gt di	e Anpa	ssung a	n die v	vorgege	ebene E	intritts	temper	atur!	Zeits	chrittv	veite:	600 s
Date	n zu	m Sim	ulatio	nsgebie	t und :	zur Si	mulatio fläsken	nszeit:					1	
TIE	re	Radi	us .	LIIIAX	KIIIAX	ober.	rrachen °a	cemperat	ur E	rasoni	° a	atur s	LINULALL	onszei
III		III					C				C		11	
120,	0	10,0		120	10					1	2,0		8760	0
Dala		1	<u></u>					· · · · · · · · · ·		1.1		1		
Date	1 SO	nnenli	urttem]	peratur	: F:\SI	JAFE_TO	GA\ErdW	armesond	en \Tes	coeisp	DIET/LSL.	uat		
υατε	T EL	areic	ncempe	raturve	rtellu	ig Irul	merer S	imulatio	11:					
Mow±	o de	a 1.a.t.	-+ 0		on o a 1- '	luc br	- Cond-	ndurch fi						
wert	e ue	s ret	LLEII D.	IMUIALI	UIISZYK.	Lus De.		naurchill	u 5 5					

Letztes Intervall der Simulationsstunde: 87599

i	tV(i) °C	tR(i) °C	tBL(i) °C	QV(i) W	QR(i) W
1	-5,9	-3,6	-2,0	9,1	0,5
11	-5,8	-3,6	0,0	12,4	6,9
21	-5,7	-3,7	0,8	13,5	8,5
31	-5,6	-3,8	1,0	13,6	9,1

i	tV(i)	tR(i)	tBL(i)	QV(i)	QR(i)
	°C	°C	°C	W	W
41	-5,4	-3,9	1,8	15,0	11,1
51	-5,3	-4,0	2,0	15,1	11,7
61	-5,2	-4,1	2,2	15,1	12,4
71	-5,0	-4,2	2,4	15,2	13,1
81	-4,9	-4,3	2,7	15,4	14,0
91	-4,8	-4,5	3,1	16,0	15,3
V	Värmeaufna	hme	Temp	peraturspr	eizung
Bezug	g 1 U-Rohr	: Sonde	e		
Vorlauf	E Rücklau	if Gesar	nt		
W	W	W		K	
1459	1106	2565	5	2,3	

Monatswerte

Simulation jahr	is- Monat S	onnenwärme kWh	9	Erdwärme So kWh	ndenarbe: kWh	it		
•	1	1 5 1 4			050			
10	1	-1514		57	959			
10	2	-1770		52	785			
10	3	182		58	717			
10	4	2019		57	473			
10	5	3047		59	171			
10	6	1651		57	0			
10	7	1049		60	0			
10	8	880		60	0			
10	9	-717		59	88			
10	10	-880		61	442			
10	11	-1589		59	731			
10	12	-2167		62	887			
	Jahressummen:	192		702	5253	Bilanz:	-4359	kWh
	Speicherzustan	d am Ende	des	Jahres bezogen	auf -10	°C:	413299	kWh

OBJEKTBEZEICHNUNG: F:\SD\FE TGA\ERDWÄRMESONDEN\TESTBEISPIEL\FEB10.DAT

Temperaturen: Vorlauf tV, Rücklauf tR, Bohrlochwand tBL; Erdreich k = 1 ... 10 in °C zur Zeit 80255 Stunden

i	tV	tR	tBL	k=1	k=2	k=3	k=4	k=5	k=6	k='/	k=8	k=9	k=10	
1	-5,91	-3,62	-3,27	-2,07	-1,84	-1,73	-1,64	-1,55	-1,48	-1,43	-1,41	-1,39	-1,39	J
2	-5,90	-3,62	-1,99	0,07	0,53	0,75	0,90	1,00	1,06	1,09	1,11	1,12	1,13	
3	-5,89	-3,62	-1,13	1,41	1,99	2,27	2,43	2,53	2,59	2,62	2,64	2,65	2,65	
4	-5,88	-3,62	-0,51	2,39	3,05	3,36	3,54	3,65	3,72	3,76	3,79	3,80	3,81	\succ Schicht 1
11	-5,81	-3,65	0,00	4,10	5,01	5,42	5,67	5,82	5,93	5,99	6,03	6,05	6,06	
12	-5,79	-3,66	-0,00	4,10	4,99	5,38	5,62	5,78	5,87	5,94	5,98	6,00	6,01)
13	-5,78	-3,66	0,66	4,15	4,97	5,35	5,58	5,73	5,83	5,90	5,94	5,96	5,97)
14	-5,77	-3,67	0,66	4,16	4,96	5,34	5,56	5,71	5,81	5,87	5,91	5,93	5,94	
														\succ Schicht 2
39	-5,47	-3,87	1,12	4,88	5,72	6,10	6,33	6,48	6,58	6,65	6,69	6,71	6,72	
40	-5,45	-3,88	1,16	4,95	5,77	6,15	6,37	6,52	6,62	6,68	6,72	6,75	6,76	ر
41	-5,44	-3,88	1,82	5,06	5,82	6,18	6,40	6,55	6,64	6,71	6,75	6,77	6,79	J
42	-5,43	-3,89	1,85	5,11	5,86	6,21	6,43	6,57	6,67	6,73	6,78	6,80	6,81	
43	-5,41	-3,90	1,88	5,15	5,90	6,24	6,46	6,60	6,70	6,76	6,80	6,83	6,84	Schicht 3
														Sement 5
119	-	-	-	11,86	11,86	11,86	11,86	11,86	11,86	11,86	11,86	11,86	11,86	
120	-	-	-	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95	J

OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\ERDWÄRMESONDEN\TESTBEISPIEL\FEB10.DAT

Temperaturen: Vorlauf tV, Rücklauf tR, Bohrlochwand tBL in °C; Phasenzustände des Erdreichs $k = 1 \dots 10$ in Werten 0 … 1 zur Zeit 80255 Stunden

Phase = 0 gefrorener Boden; Phase = 1 ungefrorener Boden; Phase = 0 ... 1 teilgefrorener Boden; Phase = x Boden ohne Feuchteanteil i tV tR tBL k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

1	-5,91	-3,62	-3,27	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	-5,90	-3,62	-1,99	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
3	-5,89	-3,62	-1,13	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
12	-5,79	-3,66	-0,00	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
13	-5,78	-3,66	0,66	х	х	х	х	х	х	х	х	х	х
13 14	-5,78 -5,77	-3,66 -3,67	0,66 0,66	x x									
13 14 15	-5,78 -5,77 -5,76	-3,66 -3,67 -3,68	0,66 0,66 0,66	X X X									
13 14 15	-5,78 -5,77 -5,76	-3,66 -3,67 -3,68	0,66 0,66 0,66	x x x									
13 14 15 120	-5,78 -5,77 -5,76 -	-3,66 -3,67 -3,68 -	0,66 0,66 0,66	x x x x									

gefrorener Boden ungefrorener Boden

wasserfreier Boden

8 Beispiele

Bild 8.20 Vorlauf- und Rücklauftemperaturen am Sondenkopf (Bild oben) und Leistungsverläufe (Bild unten) längs der Sonde

Bild 8.21 Vorlauf- und Rücklauftemperaturen am Sondenkopf sowie ausgewählte Erdreichtemperaturen (Bild oben) und Leistungsverläufe (Bild unten) im Verlauf von 10 Simulationsjahren

8.7 Abschließende Anmerkungen zum Simulationsablauf

Bei den beispielhaften Simulationen war eine stabile Arbeitsweise feststellbar. Dies ist bei der Vielzahl der numerischen Rechnungen mit kleinsten Temperaturdifferenzen zwischen den Volumenelementen und dem laufenden iterativen Einpassen des stationär betrachteten Sondenbetriebs innerhalb des Bohrlochs keine Selbstverständlichkeit. Numerisch bedingte Schwingungen können bei sehr langen Sonden, bei Füllstoffen im Bohrloch mit hoher Wärmeleitfähigkeit und vor allem bei sehr kleinen Sondendurchsätzen auftreten. Generell problematisch sind rasch wechselnde Sondenbeaufschlagungen und Randbedingungen (Bild 8.22). Als vorteilhaft stellte sich dar, dass praxisorientierte Randbedingungen bisher stets zu stabilen Berechnungsabläufen führten.

Bild 8.22 Rücklauftemperatur schneidet längs der Sonde mehrfach die Bohrlochwandtemperatur

Die festgestellten Rechenzeiten erscheinen als vertretbar. So ergaben sich für 100 m tiefe Sonden in einem Sondenfeld mit 10 m Abstand für 10 Simulationsjahre etwa 6 Minuten.

Die Variabilität bei der Nachbildung der Erdschichten (unterschiedliche Stoffwerte, Berücksichtigung von wasserhaltigen und gefrierenden Böden) blähten den Algorithmus auf. Verzichtete man auf diese Differenziertheit, so könnte die Rechnung weiter beschleunigt werden. Wichtige Hinweise zur Rechenzeitverringerung in Gegenüberstellung mit der Genauigkeit sind aus Abschnitt 8.3 zu entnehmen.

Literatur

- [1] GLÜCK, B.: Wärmespeicher als mediendurchströmter Festkörper. Bericht der RUD. OTTO MEYER Umwelt Stiftung, Hamburg 2006. Kostenlos erhältlich unter: <u>http://www.berndglueck.de/Waermespeicher</u> oder
 <u>http://www.rom-umwelt-stiftung.de</u> (⇒ Arbeit bisher ⇒ Projekt 14, Teil 3)
- [2] MAREK. R, GÖTZ, W.: Numerische Lösung von partiellen Differenzialgleichungen mit finiten Differenzen. Bruchloe: Moreno-Verlag, 1995. ISBN 3-931139-00-X
- [3] Glück, B.: Berechnung der stationären, mehrdimensionalen Wärmeleitung mittels Formfaktoren bei drei Körperoberflächen mit vorgegebenen Temperaturen und ihre Anwendung zur wärmetechnischen Simulation von Erdwärmesonden, Heizung-Lüftung-Haustechnik H. 8/2008
- [4] HAHNE, E., GRIGULL, U.: Formfaktor und Formwiderstand der stationären mehrdimensionalen Wärmeleitung, Int. J. Heat Mass Transfer, Vol. 18, pp. 751-767, Pergamon Press 1975
- [5] HAHNE, E.: VDI-Wärmeatlas (Abschnitt: Zweidimensionale Wärmeleitung), 9. Auflage. Düsseldorf: VDI-Verlag 2002
- [6] GLÜCK, B.: Wärmeübertragung, Wärmeabgabe von Raumheizflächen und Rohren, 2. Auflage. Berlin: Verlag für Bauwesen 1990. ISBN 3-345-00515-8
- [7] VDI-Wärmeatlas, 2. bis 9. Auflage. Düsseldorf: VDI-Verlag 1994 bis 2002
- [8] GLÜCK, B.: Dynamisches Raummodell zur wärmetechnischen und wärmephysiologischen Bewertung. Bericht der RUD. OTTO MEYER Umwelt Stiftung, Hamburg 2004 bis 2006. Kostenlos erhältlich unter: <u>http://www.berndglueck.de/Raummodell</u> oder <u>http://www.rom-umwelt-stiftung.de</u> (⇒ Arbeit bisher ⇒ Projekt 14, Teil 1)
- [9] Glück, B.: Wärmetechnischer Vergleich von Erdwärmekollektoren unterschiedlicher Bauart und zusätzliche Nutzung eines Luft-Sole-Wärmeübertragers, Heizung-Lüftung-Haustechnik H. 12/2007 oder siehe auch: http://www.berndglueck.de/Erdwaermekollektor