

Bernd Glück

SIMULATIONSMODELL "ERDWÄRMESONDEN"

zur wärmetechnischen Beurteilung von Wärmequellen, Wärmesenken und Wärme-/Kältespeichern

1. ERGÄNZUNG: KOAXIALSONDEN

F+E TGA Prof. Dr.-Ing. habil. Bernd Glück, Goethestraße 18, D-08547 Jößnitz (Plauen) Tel.+Fax 03741 / 52 12 14 E-Mail B.GLUECK@t-online.de

:

Aufgrund der sehr guten Zusammenarbeit mit der RUD. OTTO MEYER-UMWELT-STIFTUNG wurde das vorliegende Simulationsmodell auch bei der Stiftung veröffentlicht.

Inhaltsverzeichnis

1	Vorbemerkung und Geometrie der Koaxialsonde						
2	Wärmetechnische Modellierung der Koaxialsonde	3					
2.1	Wärmeübergangskoeffizienten für die Rohr- und Ringspaltströmung						
	• Kernrohr	3					
	• Ringspalt	5					
2.2	Wärmedurchgangs- und Teilwärmedurchgangskoeffizienten	7					
2.3	Wärmetransport im Kernrohr und im Ringspalt	7					
3	Komplexmodell zur Simulation von Koaxialsonden	10					
	Randbedingungen	10					
	Verknüpfung der Einzelalgorithmen	10					
	Programmablaufplan	10					
	Komplexprogramm zur Simulation der Koaxialwärmesonden	10					
	Hauptprogrammeingabe und Steuerung des Programmablaufs	11					
	Eingabe zeitlich veränderlicher Flüssigkeitstemperaturen	13					
	Eingabe zeitlich veränderlicher Sondenleistungen	14					
	Eingabe zeitlich veränderlichen Durchflusses	15					
	• Ausgaben (Druck- und Diagrammarten)	16					
4	Programminstallation und Hinweise zu Programmänderungen	17					
	Grundlagen für die Programmanwendung	17					
	Laden und Start des Rechenprogramms	17					
	Bearbeitung des Programmlistings	18					
5	Beispiele	19					
5.1	Alleinige Heizwärmenutzung beim Sondenbetrieb (Beispiel_Koax_1)	19					
5.2	Variationen des Sondendurchlaufes und der Sondengestaltung am Beispiel_Koax_1	30					
	Literaturverzeichnis	34					

Wichtige Hinweise:

Alle in diesem Bericht und dem zugehörigen Rechenprogramm enthaltenen Angaben, Daten, Berechnungsverfahren usw. wurden vom Autor mit bestem Wissen erstellt und sorgfältig geprüft. Dennoch sind inhaltliche Fehler nicht vollständig auszuschließen, deshalb erfolgen alle Angaben usw. ohne jegliche Verpflichtung und Garantie des Autors. Er übernimmt keinerlei Verantwortung und Haftung für etwaige inhaltliche Unrichtigkeiten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Autors unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen und Einspeicherung sowie Verarbeitung in elektronischen Systemen, die über die Eigennutzung hinausgehen, sowie für Übersetzungen und Mikroverfilmungen.

Das vorgestellte Simulationsmodell ist als Testfassung zu verstehen. Alle Interessierten sind eingeladen, an der Weiterentwicklung mitzuwirken.

Viel Erfolg bei der Anwendung!

1 Vorbemerkung und Geometrie der Koaxialsonde

Die Ergänzung basiert auf dem gleichnamigen Hauptbericht [1], der weiterhin in vollem Umfang gilt. In diesem sind die allgemeingültigen Zusammenhänge und das Simulationsmodell detailliert beschrieben, wobei die spezielle Geometrie und das wärmetechnische Modell von U-Rohrsonden die Grundlage bildete. Die Simulation erfolgte für das Erdreich instationär und für den Bohrlochquerschnitt mit Verrohrung stationär. Als Besonderheit wurde der Bohrlochquerschnitt mit der neu entwickelten, erweiterten Formfaktorenmethode untersucht. Ziel der vorliegenden Ergänzung des Simulationsmodells ist es, die Sonde als Koaxialsonde zu betrachten, stationär zu simulieren und an den bestehenden Algorithmus für die Erdreichsimulation anzupassen. Das separat gestaltete Simulationsmodell wird wiederum als kostenlose Software bereitgestellt.

Die geometrische und wärmetechnische Modellierung des Simulationsbereiches wird wie im Hauptbericht [1], Abschnitte 2 und 3 (S. 3 ff.) beibehalten. Die wärmetechnische Modellierung der Bohrung werde dagegen komplett ersetzt. Der Querschnitt durch die Koaxialsonde ist im Bild 1.1 dargestellt.

Es gelten:

- 2 r_{BL} Bohrlochdurchmesser (vgl. auch Bild 1.2 sowie Hauptbericht [1], Bilder 3.1 und 6.1)
- d_{Ka} Außendurchmesser des Kernrohres
- δ_K Wanddicke des Kernrohres
- λ_K Wärmeleitfähigkeit der Kernrohrwandung
- δ_D Dicke einer eventuellen Wärmedämmung am Kernrohr
- λ_D Wärmeleitfähigkeit einer eventuellen Wärmedämmung am Kernrohr
- d_{KD} Außendurchmesser der Kernrohrdämmung
- d_{Ha} Außendurchmesser des Hüllrohres
- $\delta_{\rm H}$ Wanddicke des Hüllrohres
- λ_{H} Wärmeleitfähigkeit der Hüllrohrwandung.

Die Wärmeleitfähigkeit des Füllstoffes, der zwischen dem Außendurchmesser des Hüllrohres und der Bohrlochwand flüssig eingebracht wird und anschließend aushärtet, kann schichtweise variieren. Er wird deshalb als $\lambda_{S}(Sch)$ angegeben. Somit könnte beispielsweise im oberflächennahen Bereich die Verfüllung mit Dämmmaterial und im tieferen Bereich mit einem sehr gut wärmeleitenden Material erfolgen. Zur genauen Höhenanpassung kann nötigenfalls eine reale Erdschicht geteilt werden.

Bild 1.1 Querschnitt durch eine Koaxialsonde mit Kern- und Hüllrohr sowie Füllmaterial im Bohrloch (Durchmesser 2 r_{BL})

Das Füllmaterial kann bezüglich seiner Wärmeleitfähigkeit höhenabhängig variieren.

Im allgemeinen Fall ist auch eine Dämmung des Kernrohres denkbar.

1

Außer der Dämmung im oberflächennahen Hüllrohrbereich wird in Fachkreisen auch die Dämmung des Kernrohres diskutiert. Sie ist im Bild 1.1 magentafarben vermerkt. Um auch diesen Fall simulieren zu können, wird sie in die weiteren Betrachtungen über die gesamte Sondenlänge einbezogen. Ist sie nicht existent, so gilt $\delta_D = 0$ und $\lambda_D = 1$.

Die in den Bildern 1.1 und 1.2 dargestellten Geometrien sind Idealisierungen, da von einem über die Höhe gleich bleibenden Bohrlochdurchmesser ausgegangen wird. In der Realität könnte er auch abgestuft sein. Eine näherungsweise Anpassung an das Modell wäre durch die Variation der Wärmeleitfähigkeit λ_{s} (Sch) denkbar.

Bild 1.2 Vertikaler Schnitt durch das Simulationsgebiet mit Kennzeichnung der Simulationsabschnitte i = 1 ... imax

Das Simulationsgebiet umfasst den Erdreichzylinder mit unterschiedlichen Horizontalschichten und das Bohrloch mit der Koaxialsonde und unterschiedlicher Verfüllung zwischen Hüllrohr und Bohrlochwand (grün Dämmmaterial, gelb Füllstoff mit hoher Wärmeleitfähigkeit).

Die eventuelle vorhandene Dämmung des Kernrohres gemäß Bild 1.1 ist hier nicht dargestellt. Falls diese vorhanden ist, gelte sie über die gesamte Sondenlänge.

Der Durchfluss durch die Koaxialsonde kann verschiedenartig sein, in der Regel wird der Vorlauf (abwärts gerichteter Medienstrom) im Hüllrohr und der Rücklauf (aufwärts gerichteter Medienstrom) im Kernrohr geführt. Die Richtungsvorgabe stellt einen Eingabewert dar.

2 Wärmetechnische Modellierung der Koaxialsonde

Die Zustands- und Stoffwerte der Durchflussmedien (Wasser, Tyfocor L) sind dem Hauptbericht [1], Abschnitt 5.1 (S. 31 ff.) zu entnehmen.

2.1 Wärmeübergangskoeffizienten für die Rohr- und Ringspaltströmung

Die Berechnung der Wärmeübergangskoeffizienten im Kernrohr und im Rohrspalt sind differenziert zu behandeln. Aus dem Hauptbericht [1], Abschnitt 5.2 (S. 33 ff.) kann der Algorithmus für das Kernrohr übernommen werden, während der Wärmeübergangskoeffizient im Ringspalt zwischen Kern- und Hüllrohr zu ergänzen ist. Generell werden wegen der geringen Temperaturspreizung die Stoffwerte für das Durchflussmedium im Kernrohr und im Ringspalt gleich angenommen. Als Bezugstemperatur gelte die sogenannte Umlenktemperatur t_{Umlenk} vom Übergang Ringspalt zum Kernrohr, d. h. am unteren Ende des Kernrohres. Dies betrifft die auf das Fluid bezogenen Größen:

ν	m^2/s	kinematische Viskosität	c	J/(kg K)	spezifische Wärmekapazität
λ	W/(m K)	Wärmeleitfähigkeit	ρ	kg/m³	Dichte
Pr	_	PRANDTLzahl.			

Als Rohrlänge L wird vereinfachend stets die Sondenlänge L_{Sonde} angesetzt.

Die Richtung des Wärmestromes hat normalerweise auch Einfluss auf den Wärmeübergang, da die Stoffwerte in der wandnahen Schicht gegenüber den mittleren Strömungswerten verändert sind. In den üblichen Einsatzfällen für Erdwärmesonden wird die Korrektur jedoch unter 2 % sein. D. h., sie liegt im Genauigkeitsbereich von Nu und bleibt deshalb unbeachtet.

• Kernrohr

Die Ermittlung des konvektiven Wärmeübergangskoeffizienten basiert auf der Ähnlichkeitstheorie unter Verwendung der Nußeltgleichungen nach [2, 3]. Es gelten die Größen:

d_{Ki}	m	Kernrohrinnendurchmesser	W_{K}	m/s	Geschwindigkeit im Kernrohr
		$d_{Ki} = d_{Ka} - 2 \delta_K$			
d_{Ka}	m	Kernrohraußendurchmesser	Re _K	_	REYNOLDSzahl im Kernrohr
					$Re_K = w_K d_{Ki} / v$
Nu _K	_	NUSSELTzahl im Kernrohr	$\alpha_{\rm K}$	$W/(m^2K)$	Wärmeübergangskoeffizient im
					Kernrohr $\alpha_{K} = Nu_{K} \lambda / d_{Ki}$.

Für die erzwungene Rohrströmung gelten in Abhängigkeit der Strömungsart: Nußeltzahl bei laminarer Strömung ($\text{Re} \le 2300$)

Nu_K =
$$\left(49,028 + 4,173 \,\mathrm{Re}_{\mathrm{K}} \,\mathrm{Pr} \,\frac{\mathrm{d}_{\mathrm{Ki}}}{\mathrm{L}}\right)^{0,333}$$
 (2.1)

Gültigkeitsbereich: $\text{Re}_{\text{K}} < 2300$; $0,1 < \text{Re}_{\text{K}} \text{ Pr } d_{\text{Ki}}/L < 10^4$ Nußeltzahl bei turbulenter Strömung (Re > 2300)

$$Nu_{K} = \frac{B \left(Re_{K} - 1000\right) Pr}{1 + 12,7 B^{0.5} \left(Pr^{0.667} - 1\right)} \left(1 + \left(\frac{d_{Ki}}{L}\right)^{0.667}\right)$$
(2.2)

mit der Hilfsgröße B = $(5,15 \text{ lg Re}_{\text{K}} - 4,64)^{-2}$ (2.3) Gültigkeitsbereich: $2300 < \text{Re}_{\text{K}} < 10^{6}$; $d_{\text{Ki}}/\text{L} < 1$. Neuere Aussagen im laminaren Bereich gehen auf SHAH, MARTIN, STEPHAN, GNIELINSKI zurück, die die abschnittsweise geltenden Nußeltbeziehungen, die teilweise aus numerischen Auswertungen stammen, in eine Gleichung für die mittlere NUSSELT-Zahl mit Gültigkeit für den gesamten Bereich überführten. So folgt nach [3] der jetzigen Auflage:

$$Nu_{K} = \left\{ 3,66^{3} + 0,7^{3} + \left(1,615(Re_{K} Pr d_{Ki} / L)^{0,333} - 0,7 \right)^{3} + \left(\left(\frac{2}{1 + 22Pr} \right)^{0,167} (Re_{K} Pr d_{Ki} / L)^{0,5} \right)^{3} \right\}^{1/3}$$
(2.4)

Gültigkeitsbereich: $Re_K < 2300$; $0 < Re_K Pr d_{Ki}/L < \infty$.

Für den turbulenten Bereich erfolgten neue Auswertungen der bekannten Versuchsergebnisse, wobei auch ein stetiger Übergang zwischen den laminaren und den turbulenten NUSSELT-Zahlen hergestellt wurde. Dies dient einerseits der Beseitigung von numerischen Instabilitäten bei wärmetechnischen Berechnungen – beispielsweise Optimierungen – infolge wiederholter Sprünge zwischen Nu_{laminar} und Nu_{turbulent} im Übergangsbereich. Andererseits wird damit der Erkenntnis von ROTTA Rechnung getragen, der im Übergangsbereich Re > 2300 alternierende Umschläge der Strömungsform feststellte. GNIELINSKI schlägt nachfolgende Berechnung vor:

ausgebildete turbulente Strömung

$$Nu_{K} = \frac{B Re_{K} Pr}{1 + 12,7 B^{0.5} (Pr^{0.667} - 1)} \left(1 + \left(\frac{d_{Ki}}{L}\right)^{0.667} \right)$$
(2.5)

mit der Hilfsgröße B = $(5,09 \text{ lg Re} - 4,24)^{-2}$ (2.6) Gültigkeitsbereich: $10^4 \le \text{Re}_K \le 10^6$; $0,6 \le \text{Pr} \le 1000$; $d_{\text{Ki}}/\text{L} \le 1$.

Übergangsbereich

Es wird eine lineare Interpolation zwischen $Nu_{laminar}(Re = 2300)$ nach Gl. (2.4) und $Nu_{turbulent}(Re = 10000)$ nach Gl. (2.5) vorgenommen, wobei gelten:

$$\gamma = \frac{\text{Re}_{\text{K}} - 2300}{10^4 - 2300} \tag{2.7}$$

$$Nu_{K} = (1 - \gamma) Nu_{K,laminar} (Re = 2300) + \gamma Nu_{K,turbulent} (Re = 10000)$$
(2.8)
Gültigkeitsbereich: 2300 < Re_K < 10⁴; 0,6 ≤ Pr ≤ 1000; d_{Ki}/L ≤ 1.

Die Linearisierung im Übergangsbereich ist umstritten, denn bei technisch realen Einströmbedingungen wird häufig eine beständige turbulente Strömung zu erwarten sein. Die Linearisierung kann natürlich auch mit den früheren Berechnungsgleichungen erfolgen, wobei als Grenzwert Re = 7000 vorgeschlagen wird. Damit gelten in diesem Übergangsbereich die nachfolgenden Zusammenhänge:

 $Nu_{K,laminar}(Re = 2300)$ nach Gl. (2.1) und $Nu_{K,turbulent}(Re = 7000)$ nach Gl. (2.2)

$$\gamma^* = \frac{\text{Re}_{\text{K}} - 2300}{7000 - 2300} \tag{2.9}$$

 $Nu_{K} = (1 - \gamma^{*}) Nu_{K.laminar} (Re = 2300) + \gamma^{*} Nu_{K.turbulent} (Re = 7000).$ (2.10)

Im Bild 2.1 sind die unterschiedlichen Berechnungsansätze grafisch gegenübergestellt.

1/2

Anwendungsempfehlung: Die Abweichung zwischen den Gln. (2.8) und (2.10) ist unbedeutend gegenüber der ausgebildeten turbulenten Strömungsform nach Gl. (2.2). Somit kann Nu = f(Re) beispielsweise im Übergangsbereich bis Re \leq 7000 durch die Gl. (2.10) und darüber durch Gl. (2.2) approximiert werden. Liegt laminare Strömung vor, ist der Einfachheit halber Gl. (2.1) zu bevorzugen, da der Unterschied zu Gl. (2.4) ohnehin klein ist.

Bild 2.1 Gegenüberstellung der verschiedenen Nußeltgleichungen in Abhängigkeit von Re für einen ausgewählten Einsatzfall

• Ringspalt

Bei der Berechnung des Wärmeübergangskoeffizienten im Ringspalt werden nach [3] die im Bild 2.2 dargestellten Fälle unterschieden.

Bild 2.2 Übliche Berechnungsfälle nach [3] für den Wärmeübergang im konzentrischen Ringspalt

Die realen Wärmetransportbedingungen im konzentrischen Ringspalt der Sonde werden durch keine der algorithmierten Fälle korrekt beschrieben. Die Wirklichkeit der wärmetechnischen Verhältnisse ist zwischen den Fällen B und C zu erwarten. Es gelten die Größen:

Wandtemperaturen $t_{K} = t_{H}$

$d_{\rm Hi}$	m	Hüllrohrinnendurchmesser	d_{KD}	m	Kernrohrdämmdurchmesser
		$d_{\rm Hi} = d_{\rm Ha} - 2 \delta_{\rm H}$			$d_{\rm KD} = d_{\rm Ka} + 2 \delta_{\rm D}$
d_{Ha}	m	Hüllrohraußendurchmesser	WS	m/s	Geschwindigkeit im Spalt
d_{hy}	m	hydraulischer Durchmesser	Res	_	REYNOLDSzahl im Ringspalt
		$d_{\rm hy} = d_{\rm Hi} - d_{\rm KD}$			$Re_S = w_S d_{hy} / v$
Nus	_	NUSSELTzahl	$\alpha_{\rm S}$	$W/(m^2K)$	Wärmeübergangskoeffizient im
					Ringspalt $\alpha_{\rm S} = \operatorname{Nu}_{\rm S} \lambda / d_{\rm hy}$.

Für die thermisch und hydraulisch ausgebildete Laminarströmung ($\text{Re} \le 2300$) gelten nach [3] für die Fälle B und C:

Nu_B = 3,66 + 1,2
$$\left(\frac{d_{KD}}{d_{Hi}}\right)^{0.5}$$

Nu_C = 3,66 + $\left(4 - \frac{0,102}{d_{KD}/d_{Hi} + 0,02}\right) \left(\frac{d_{KD}}{d_{Hi}}\right)^{0.04}$

Für die weiteren Betrachtungen wird aus diesen Fällen der Mittelwert als repräsentativ für die Spaltströmung in der Koaxialsonde gebildet:

$$Nu_{S,End} = 3,66 + 0,6 \left(\frac{d_{KD}}{d_{Hi}}\right)^{0.5} + \left(2 - \frac{0,051}{d_{KD}/d_{Hi} + 0,02}\right) \left(\frac{d_{KD}}{d_{Hi}}\right)^{0.04}.$$
 (2.11)

Zur Berücksichtigung des thermischen Anlaufs gilt nach [3] – angewendet auf einen Zwischenwert der Fälle B und C – der Term

Nu_{S,Anl} = 1,615
$$\left(1 + 0,14 \left(\frac{d_{KD}}{d_{Hi}}\right)^{0,2}\right) \left(\text{Re}_{S} \text{ Pr} \frac{d_{hy}}{L}\right)^{0,333}$$
. (2.12)

Als Zusammenfassung schlägt STEPHAN vor:

$$Nu_{S} = \left(Nu_{S,End}^{3} + Nu_{S,Anl}^{3}\right)^{0.333}$$
 (2.13)

Ein weiterer Term zur Berücksichtigung des hydrodynamischen Anlaufs (Strömungsaufbaus) am Eintritt in den Ringspalt bleibt unbeachtet, da diese Erhöhung auf die große Gesamtlänge L als unreal erachtet wird.

Für die turbulente Strömung (Re > 2300) werde wie bei der Rohrströmung zwischen der ausgebildeten Strömung und dem Übergangsbereich unterschieden.

ausgebildete turbulente Strömung (Re >7000)

Generell basiert die Berechnung auf der Rohrströmung in Analogie zu Gl. (2.2) mit den im Ringspalt geltenden Parametern. Die Nußeltzahl ist dann mit einem Faktor in Abhängigkeit des Berechnungsfalles B oder C (Bild 2.2) und des Durchmesserverhältnisses d_{KD} / d_{Hi} zu korrigieren. Aus den in [3] vorliegenden Angaben wurde näherungsweise der Korrekturfaktor zu {1 – 0,14 (d_{KD} / d_{Hi})^{0,7}} bestimmt. Somit gilt zusammenfassend:

$$Nu_{S} = \left(1 - 0.14 \left(\frac{d_{KD}}{d_{Hi}}\right)^{0.7}\right) \frac{B \left(Re_{S} - 1000\right) Pr}{1 + 12.7 B^{0.5} \left(Pr^{0.667} - 1\right)} \left(1 + \left(\frac{d_{hy}}{L}\right)^{0.667}\right)$$
(2.14)

$$B = (5,15 \, \lg \, Re_{\rm S} - 4,64)^{-2} \,. \tag{2.15}$$

• Übergangsbereich ($2300 < \text{Re}_{\text{S}} \le 7000$)

Es wird eine lineare Interpolation zwischen $Nu_{S,laminar}(Re = 2300)$ nach Gl. (2.13) und $Nu_{S,turbulent}(Re = 7000)$ nach Gl. (2.14) vorgenommen, wobei gelten:

$$\gamma^* = \frac{\text{Re}_{\text{s}} - 2300}{7000 - 2300} \tag{2.16}$$

$$Nu_{S} = (1 - \gamma^{*}) Nu_{S,laminar}(Re_{S} = 2300) + \gamma^{*} Nu_{S,turbulent}(Re_{S} = 7000).$$
(2.17)

Schließlich folgen die Wärmeübergangskoeffizienten im Kernrohr α_K und im Ringspalt α_S zu:

$$\alpha_{\rm K} = {\rm Nu}_{\rm K} \,\lambda \,/\, d_{\rm Ki} \qquad \text{sowie} \qquad \alpha_{\rm S} = {\rm Nu}_{\rm S} \,\lambda \,/\, d_{\rm hy}. \tag{2.18}$$

2.2 Wärmedurchgangs- und Teilwärmedurchgangskoeffizienten

Zwischen der Flüssigkeit im Kernrohr und im Ringspalt ist der Wärmedurchgangskoeffizient k_K bedeutungsvoll. Mit den geometrischen und wärmetechnischen Größen, die im Abschnitt 1 definiert wurden, gilt bezogen auf die Außenfläche der Kernrohrdämmung:

$$k_{\rm K} = \left(\frac{d_{\rm KD}}{\alpha_{\rm K} d_{\rm Ki}} + \frac{d_{\rm KD}}{2 \lambda_{\rm K}} \ln \frac{d_{\rm Ka}}{d_{\rm Ki}} + \frac{d_{\rm KD}}{2 \lambda_{\rm D}} \ln \frac{d_{\rm KD}}{d_{\rm Ka}} + \frac{1}{\alpha_{\rm S}}\right)^{-1} .$$

$$(2.19)$$

Für den Wärmedurchgang vom Ringspalt an die Bohrlochwand ist der Teilwärmedurchgangskoeffizient κ_H zu bilden. Er wird auf den Durchmesser des Bohrloches 2 r_{BL} bezogen. Mit den Größen des Abschnittes 1 ergibt sich:

$$\kappa_{\rm H} = \left(\frac{2r_{\rm BL}}{\alpha_{\rm S}d_{\rm Hi}} + \frac{r_{\rm BL}}{\lambda_{\rm H}}\ln\frac{d_{\rm Ha}}{d_{\rm Hi}} + \frac{r_{\rm BL}}{\lambda_{\rm S}({\rm Sch})}\ln\frac{2r_{\rm BL}}{d_{\rm Ha}}\right)^{-1}.$$
(2.20)

2.3 Wärmetransport im Kernrohr und im Ringspalt

Die Rohrachsen sind in i-Richtung orientiert (siehe Bild 1.2). Die Rohrlänge beträgt L_{Sonde} , wobei mit der Abschnittshöhe Δh und der maximalen Abschnittszahl iSonde der Zusammenhang gilt: $L_{Sonde} = \Delta h$ iSonde. (2.21)

Bei der Durchströmung des Kernrohres ($w_K > 0$) und des Ringspaltes ($w_S > 0$) bleibt eine eventuelle Änderung der Wandtemperaturen der Koaxialsonde unbeachtet, d. h. ihre Wärmespeicherkapazität wird vernachlässigt und der gesamte Wärmestrom der Flüssigkeit zugeordnet. Eine weitere Vereinfachung stellt die Annahme dar, dass keine Wärmeleitung innerhalb der Flüssigkeit erfolgt. Diese ist gegenüber der relativ großen Mediengeschwindigkeit auch unbedeutend. Damit bewirkt die im Abschnitt i zugeführte Wärme eine eindeutige Änderung der Medientemperatur.

Die Medientemperaturen sind selbstverständlich in Abhängigkeit von der Durchflussrichtung zu ermitteln, weshalb zwischen Vor- und Rücklauf zu unterscheiden ist.

Die Lage der Rohrleitungsabschnitte i und die Zuordnung der Temperaturen folgen aus den Bildern 2.3 und 2.4. Die zeitabhängige Eintrittstemperatur $t_{ein}(\tau)$ und der Massestrom \dot{m} sind vorgegeben. Anstelle der Eintrittstemperatur kann auch ein zeitabhängig geforderter Wärmeentzug $\dot{Q}_{Sonde}(\tau)$ aus der Erdwärmesonde vorgegeben sein. Dies ist beispielsweise der Fall, wenn eine Wärmepumpe diesen benötigt. Die abschnittsweisen Wärmeströme an die Rohrabschnitte sind aus den Vor- und Rücklauftemperaturen sowie den Bohrlochwandtemperaturen unter Ansatz der Wärmeleitfähigkeit des Füllstoffes und der Wärmedurchgangs- bzw. Teilwärmedurchgangskoeffizienten der Rohre mit Hilfe der Gln. (2.19) und (2.20) bestimmbar.

Mit Kenntnis des Massestromes in den Rohren ergibt sich der Wärmekapazitätsstrom $\dot{C} = c \dot{m}$. Damit können abschnittsweise die Flüssigkeitstemperaturen berechnet werden, wobei sich die Vor- und Rücklaufabschnitte gegenseitig beeinflussen und somit paarweise einzubeziehen sind.

Bild 2.3 Bohrloch mit Koaxialsonde und Rücklauf im Kernrohr (Aufwärtsströmung) mit Kennzeichnung der Abschnitte i und den zugehörigen Flüssigkeitstemperaturen sowie Wärmeströmen

Die Wärmeströme gelten rotationssymmetrisch. Die Pfeilrichtung steht für positive Wärmeströme. Die Flüssigkeitstemperaturen werden dem jeweiligen Abschnittsbeginn zugeordnet. Die Bohrlochtemperaturen gelten näherungsweise in der jeweiligen Abschnittsmitte.

Bild 2.4 Bohrloch mit Koaxialsonde und Vorlauflauf im Kernrohr (Abwärtsströmung) mit Kennzeichnung der Abschnitte i und den zugehörigen Flüssigkeitstemperaturen sowie Wärmeströmen Die Wärmeströme gelten rotationssymmetrisch. Die Pfeilrichtung gilt für positive Wärmeströme. Die Flüssigkeitstemperaturen werden dem jeweiligen Abschnittsbeginn zugeordnet. Die Bohrlochtemperaturen gelten näherungsweise in der jeweiligen Abschnittsmitte.

Würde man die Berechnung mit dem Abschnitt i = 1 beginnen, wäre die Eintrittstemperatur in den Vorlaufabschnitt bekannt, nicht aber die des Rücklaufabschnittes. Deshalb erfolgt die schrittweise Verfolgung der Medientemperaturen ausgehend von einer angenommenen Umlenktemperatur t_{Umlenk} , die am Sondenende anliegt. Von da aus folgen stets bezogen auf einen Rohrabschnitt i:

Berechnung der Wärmeströme von der Bohrlochwand durch das Füllmaterial und die Hüllrohrwandung in den Ringspalt als Q_H(i) und vom Ringspalt durch eine eventuell vorhandene Kernrohrdämmung und die Kernrohrwandung in das Kernrohr als Q_K(i). Im Ringspalt verbleibt nur der Wärmestrom Q_H(i) – Q_K(i). Je nach Strömungsrichtung handelt es sich dabei um die Wärmezufuhr an den Vor- oder Rücklauf. Analoges gilt für Q_K(i). Dies wird im Weiteren berücksichtigt. Die Berechnung beginnt mit dem Abschnitt iSonde. Es gelten gemäß Bild 2.3 und Bild 2.4:

Bohrlochwandtemperatur t_{BL} (iSonde).

$$t_{\rm V}(i{\rm Sonde}+1) = t_{\rm Umlenk}$$
(2.22)

$$t_{\rm R}(i{\rm Sonde}+1) = t_{\rm Umlenk}.$$
(2.23)

Berechnung der Wärmeströme für den Abschnitt i gemäß Bild 2.3

$$\dot{Q}_{R}(i) = k_{K} (t_{V}(i+1) - t_{R}(i+1)) \pi d_{KD} \Delta h$$
 (2.24)

$$\dot{Q}_{V}(i) = \kappa_{H} \left(t_{BL}(i) - t_{V}(i+1) \right) \pi \ 2 r_{BL} \Delta h - \dot{Q}_{R}(i)$$
 (2.25)

und nach Bild 2.4

$$Q_{V}(i) = k_{K} (t_{R}(i+1) - t_{V}(i+1)) \pi d_{KD} \Delta h$$
(2.26)

$$Q_{R}(i) = \kappa_{H} (t_{BL}(i) - t_{R}(i+1)) \pi 2 r_{BL} \Delta h - Q_{V}(i).$$
(2.27)

$$t_{V}(i) = t_{V}(i+1) - \frac{\dot{Q}_{V}(i)}{\dot{C}}$$
(2.28)

$$t_{R}(i) = t_{R}(i+1) + \frac{\dot{Q}_{R}(i)}{\dot{C}}.$$
(2.29)

Die Berechnung endet bei i = 1, dem oberen Rand der Erdwärmesonde. Es gelten dann: $t_{ein} = t_V(1)$ und $t_{aus} = t_R(1)$, woraus auch die Sondenleistung berechenbar ist

$$Q_{\text{Sonde}} = C \left(t_{\text{aus}} - t_{\text{ein}} \right). \tag{2.30}$$

Je nachdem, ob die Flüssigkeitseintrittstemperatur t_{ein} oder die Leistung der Erdwärmesonde \dot{Q}_{sonde} vorgegeben ist, muss eine Anpassung durch wiederholende Berechnungen des vorgestellten Ablaufs mit gezielt veränderter Temperaturannahme t_{Umlenk} erfolgen. Details zur Anpassungsstrategie sind dem Programmlisting zu entnehmen.

3 Komplexmodell zur Simulation von Koaxialerdwärmesonden

Als visuelle Grundlage dient Bild 1.2. Die meisten Abschnitte und Aussagen können vom Hauptbericht [1] übernommen werden. Sie finden der Vollständigkeit Erwähnung, Ergänzungen werden komplett wiedergegeben.

- Die Randbedingungen sind im Hauptbericht [1], Abschnitt 6.1 (S. 38 ff.) fixiert und gelten weiterhin uneingeschränkt.
- Für die Verknüpfung der Einzelalgorithmen instationäre Simulation des Erdreiches und stationäre Simulation im Bohrloch – zum Gesamtsimulationsmodell ist wiederum der Hauptbericht [1], Abschnitt 6.2 (S. 41 ff.) voll gültig. Die betrifft grundsätzlich auch die Aussagen zur iterativen Einpassung der Sondenvorgaben – Eintrittstemperatur oder Sondenleistung. Es können lediglich zwei Varianten des Durchflusses gemäß des jetzigen Abschnittes 2.3 betrachtet werden. Die Auswahl wird durch eine entsprechende Eingabe getroffen. Für den Zusammenhang zwischen Bohrlochwandtemperatur t_{BL,i} und der Erdreichtemperatur in der Mitte des ersten Kreisrings t_{i,k=1} ändert sich jedoch die wärmetechnische Beziehung (Hauptbericht [1]: Gl. (6.4)) entsprechend der jetzigen Geometrie zu:

$$t_{BL,i} = t_{i,k=1} - \frac{\ln \frac{r_{k=1}}{r_{BL}}}{2\pi \lambda Feld_{i,k} \Delta h} (\dot{Q}_{v}(i) + \dot{Q}_{R}(i)).$$
(3.1)

Diese Temperatur gilt dann für den folgenden Zeitschritt, sodass man mit der Anpassung grundsätzlich einen Zeitschritt nacheilt.

Um numerische Schwingungen zu vermeiden, wird zur Dämpfung nur die Hälfte der Änderung weitergegeben. Damit verzögert sich die genaue Anpassung der Bohrlochtemperatur um weitere Zeitschritte. Bei durchgehendem Sondenbetrieb ist diese Einschwingphase für den gesamten Simulationszeitraum bedeutungslos. Problematisch ist das Vorgehen aber bei intermittierendem Sondenbetrieb, da z. B. bei einer Zeitschrittweite von 10 Minuten und einem Sondenbetriebs-rhythmus von einer Stunde nur sechs Anpassungen möglich sind. Entscheidend ist dabei stets die Wahl der Bohrlochwandtemperatur beim Sondenbetriebsstart. Die Auswertung zahlreicher Proberechnungen mit konstanter Sondenleistung während der Betriebsphasen – wie sie annähernd bei einer taktenden Wärmepumpe gefordert wird – ergab, dass es meistens vorteilhaft ist, wenn man die letzte verwendete Bohrlochtemperatur beim Start der neuen Betriebsphase unverändert wiederverwendet. Bei langen Betriebspausen – z. B. einer Sommerpause – können die nachfolgenden ersten Betriebsstunden jedoch zu einem fehlerbehafteten Temperaturfeld in Sondennähe führen. Generell bietet die Schnittstelle $t_{BL,i}$ noch Möglichkeiten für verbesserte Approximationen.

Die Wärmebilanzen an den Rändern des Simulationsgebietes und die Speicherwärme im Simulationsgebiet werden wie im Hauptbericht erfasst, wobei lediglich der Wärmestrom an der Bohrlochwand durch $\dot{Q}_{H}(i) = \dot{Q}_{V}(i) + \dot{Q}_{R}(i)$ definiert ist.

- Der Programmablaufplan entspricht exakt dem des Hauptberichtes [1], Abschnitt 6.3 (S. 43 ff.).
- Auch für das Komplexprogramm zur Simulation der Koaxialwärmesonden bleibt grundsätzlich Hauptbericht [1], Abschnitt 6.4 (S. 45 ff.) gültig. Änderungen treten lediglich in der Hauptberfläche (Maske 1) auf, die durch die Geometrie der Koaxialsonde bewirkt werden (Bild 3.1).

Koaxialerdwarmesonde - Hau	ptprogramm						
Sondensimulation für konzent	trische Rohranordnung (Son	dervariante)	F:\SD\FE_	TGA\Erdwärmesonde	n\Beispiel_Koax_1		
Autor: Prof. DrIng. habil. Bernd Glück (V1/2008)							
Erdoberfläche Bohrloch mit Rohren	Hauptgeometriedaten	Schichtdaten und Bohrle	ochfüllmaterial		TO-h	Lawba	
Schicht Schi = 1	Bohrlochradius rBL 0 m	Schicht Rho kg/m ³	W/(m K)	с J/(kg K)	kJ/kg m	Füllstoff	
	Länge LSonde 0 m	fe	əst flüssig	fest flüssig		W/(m K)	
fin the second s	Dösklauf im Kananda	Sch = 1 0	0 0	0 0	0 0	0	
Pointer View Subject S	Kucklauf im Kernrohr	Sch = 2 0	0 0	0 0	0 0	0	
Sch E B	Vonaul im Kenroni C						
and ation		Sch = 3 0	0 0	0 0	0 0	0	
		Sch = 4 0	0 0	0 0	0 0	0	
Kemrohr							
		Sch = 5 0	0 0	0 0	0 0	0	
Schicht Sch = Schmax	Länge LSim 0 m	Sch = 6 0	0 0	0 0	0 0	0	
Sohle des	imax 0						
Durchmesser des	Simulationsradius rEB 0 m	Sch = 7 0	0 0	0 0	0 0	0	
Simulationsgebietes 2 r _{EB}	kmax 0	Sch = 8 0	0 0	0 0	0 0	0	
Bobr- und Sondendaten							
Hüllrohr:			Beginn	der Simulation: 1. J	anuar, 1. Stunde)		
Rohraussendurchmesser 0 mm	Wanddicke 0 mm Wärmel	eitfähigkeit 0 W/(m	K) Maxima	ale Anzahl der Simul	lationsstunden	8760	
Kernrohr:			Konsta	nte Erdoberflächente	emperatur	°C	
Rohraussendurchmesser 0 mm	Wanddicke 0 mm Wärmel	eitfähigkeit 0 W/(m	K) Evtl. La	aden der Sonnenluftt	emperatur (Pfad +	Datei):	
Dämmung:	Dicke 0 mm Wärmel	eitfähigkeit 1 W/(m	і К)				
Durchflussmedium: C Tyfocor L 4	40 % O Tyfocor L 25 %	C Wasser	Unbeei	nflusste Sohlentemp	peratur	-273 °C	
Eintrittstemperatur °C oder	Leistung W Volum	enstrom I/h	Evtl. Ei	ngabe der Erdreicht	emperaturverteilur	ig oden):	
Die Angaben gelten für die gesamte Simulationsze verzugehmen. Die Leistung und der Volumenstren	eit. Sind diese Felder "blank", dann ist die Eingab	e unter ZEITVERLAUF		Sindhonon Sindhal		laony.	
Volzanenmen. Die Leistung und der Volumenstor	n bezienen sich auf die Komplette Sonde.		Bei Einge	abe von "blank" wird die alle i ausgebend von de	vertikale Temperatur	vertei-	
Die Simulationsanpassung soll die gewüns	schte {	Leistung } sicherstelle	mit der T	emperaturreduzierung	von 0,03 K/m nach ob	en	
ermittelit. (I, K) girt für alle Kreisringe K.							
Abläufe: 1. STARTEN drücken und Pfad 3. Bei Eingabe oder Korrektur der 5. Über ZEITVERLÄUFE Eintrittstempera-							
2. Daten aus DATEI LADEN Minuszeichen oder "Blank" verwenden! Durchfluss eingeben!							
oder Neueingabe vornehmen! 4. EINGABESPEICHERUNG drucken! 5. BERECHNUNG, DRUCK, TABELLE Es erfolgt eine Grobkontrolle. oder DIAGRAMM drücken!							
STARTEN DATEI LADEN EIN	IGABESPEICHERUNG BERECH	NUNG Ergeb	DRUCK	DIAGRA	MM-SONDE		
Zeitverläufe > DURCHFLUSS EINTRITTSTEMPERATUR SONDENLEISTUNG ^{NISSE >} T-/Phase-TABELLE DIAGRAMM-UMFELD BEENDEN							

Um langes Suchen zu vermeiden wird die Eingabe komplett beschrieben.

Bild 3.1 Hauptoberfläche (Maske 1) des Rechenprogramms "Koaxialerdwärmesonde" mit der Startfüllung von Daten, die durch das Laden einer bereits gefüllten Datei oder durch Einzeleingaben bzw. Korrekturen überschreibbar ist

• Hauptprogrammeingabe und Steuerung des Programmablaufs (Bild 3.1)

Die nachfolgenden Bezeichnungen entsprechen den programminternen Namen. Sie dürften aber leicht mit den Maskenbezeichnungen erklärlich sein.

Hauptgeometriedaten (siehe Bild 1.2 oder Bildschirmmaske 3.1):					
rBL	m	Bohrlochradius			
Rücklauf_ Kernrohr	-	 Durchströmrichtung (im Normalfall wird der Rücklauf im Kernrohr geführt): Rücklauf im Kernrohr (programmintern: Rücklauf_Kernrohr = 1) Vorlauf im Kernrohr (programmintern: Rücklauf Kernrohr = 0) 			
rEB	m	Simulationsradius			
LSonde	m	Sondenlänge (Tiefe bis zum Fußpunkt der Koaxialsonde			
LSim	m	Tiefe bis zur Sohle des Simulationsgebietes (simulierter Erdreichzylinder)			
imax	-	Anzahl der vertikalen Unterteilungen des Simulationsgebietes			

kmax	-	Anzahl der horizontalen Unterteilungen des Simulationsgebietes (Anzahl der konzentrischen Kreisringe)			
Schichtdate	Schichtdaten und Bohrlochfüllmaterial (siehe Bild 1.2 oder Bildschirmmaske 3.1):				
Rho(Sch)	kg/m³	Dichte des Erdstoffes in der Schicht Sch (Es wird kein Unterschied zwischen gefrorenem und ungefrorenem Boden getroffen.)			
lam(Sch)	W/(m K)	Wärmeleitfähigkeit des gefrorenen Bodens			
lamfl(Sch)	W/(m K)	Wärmeleitfähigkeit des ungefrorenen Bodens (fl für flüssiges Wasser)			
c(Sch)	J/(kg K)	Spezifische Wärmekapazität des gefrorenen Bodens			
cfl(Sch)	J/(kg K)	Spezifische Wärmekapazität des ungefrorenen Bodens (fl für flüssiges Wasser)			
rS(Sch)	kJ/kg	Phasenwandelwärme des homogenen Erde-Wasser-Gemischs (Schmelzenthalpie des anteiligen Wassers wird vereinfacht auf die Gemischmasse bezogen)			
TSch(Sch)	m	Tiefe der Schichtunterseite von der Erdoberfläche			
lamS(Sch)	W/(m K)	Wärmeleitfähigkeit des Füllstoffs im Bohrloch (Zuordnung kann schichtenwei- se erfolgen; zur genauen Höhenanpassung kann nötigenfalls eine reale Erd- schicht geteilt werden)			
Rohr- und	Mediendat	ten (siehe Bild 1.1)			
dHa	mm	Außendurchmesser des Hüllrohres			
delH	mm	Rohrwanddicke des Hüllrohres			
lamH	W/(m K)	Wärmeleitfähigkeit der Hüllrohrwand			
dKa	mm	Außendurchmesser des Kernrohres			
delK	mm	Rohrwanddicke des Kernrohres			
lamK	W/(m K)	Wärmeleitfähigkeit der Kernrohrwand			
delD	mm	Dämmdicke des Kernrohres			
lamD	W/(m K)	Wärmeleitfähigkeit der Dämmung des Kernrohres (Wenn delD = 0, dann lamD = 1 setzen!)			
Fluessig- keit	-	 Durchflussmedium in den Sondenrohren: wässrige Lösung mit 40 % Tyfocor L wässrige Lösung mit 25 % Tyfocor L Wasser (programmintern: Fluessigkeit = 4) (programmintern: Fluessigkeit = 5) (programmintern: Fluessigkeit = 1) 			
Tfix	°C	Konstante Flüssigkeitseintrittstemperatur während der gesamten Simulationszeit Falls Qfix gilt oder die Eintrittstemperatur zeitabhängig ist, "blank" eingeben (bitte kein Leerzeichen). {Für Zeitfolge Maske 2 verwenden!}			
Qfix	W	Geforderte, konstante Sondenleistung während der gesamten Simulationszeit Falls Tfix gilt oder die Sondenleistung zeitabhängig ist, "blank" eingeben (bitte kein Leerzeichen). {Für Zeitfolge Maske 3 verwenden!}			
Vfix	l/h	Konstanter Durchfluss durch die Sonde während der gesamten Simulationszeit (Vfix ≥ 0); Vfix > 0 sollte eine Geschwindigkeit im Kernrohr und Ringspalt von 0,2 1,5 m/s garantieren. Wenn Vfix > 0, muss auch Tfix oder Qfix einen sinnvollen Wert besitzen! Vfix = 0 dient zur Erdreichsimulation ohne Sondenbetrieb. Falls sich der Durchfluss in seiner Größe zeitlich ändert oder Unterbrechungen aufweist, "blank" eingeben (bitte kein Leerzeichen). {Für Zeitfolge Maske 4 verwenden!}			

Anpass	-	Anpassung der Simulation soll gewährleisten:• Flüssigkeitseintrittstemperatur• Sondenleistung(programmintern: Anpass = 2)				
Daten zum	Simulatio	nsablauf				
BSmax	h	Anzahl der gewünschten Simulationsstunden				
tOF	°C	Konstante Erdoberflächentemperatur Bei einer Einhausung über dem Simulationsgebiet gilt die Raumtemperatur. Bei freier Fläche über dem Simulationsgebiet ist die zeitlich veränderliche Son- nenlufttemperatur maßgebend, die als Datei benannt werden muss. Für tOF ist "blank" einzugeben (bitte kein Leerzeichen)				
Datei für Sonnen- lufttempe- ratur	-	Wenn tOF = "blank", dann Pfad und Datei für Sonnenlufttemperatur benennen. Die Sonnenlufttemperatur ta(τ) sollte nach [1], Gl. (6.1) gebildet werden, wobei der Wärmeübergangskoeffizient $\alpha_a = 15$ W/(m ² K) zu verwenden ist. Weiterhin wird der Absorptionskoeffizient a = 0,3 empfohlen. Die Lufttemperatur und die Globalstrahlung ist dem für den Standort gültigen Testreferenzjahr nach DIN 4710 zu entnehmen. Die Datei muss 8760 Stundenwerte für ta vom 1. Januar bis 31. Dezember enthalten und von Visual Basic durch einen Input-Befehl lesbar sein				
tErdsohle	°C	Konstante Erdsohlentemperatur Die Temperatur muss mit der Tiefe der Sohle des Simulationsgebietes zusam- menpassen. Es darf kein Oberflächeneinfluss mehr auftreten.				
Erdreich- tempera- tur- und Phasenfeld-Bei Beginn einer Simulation wird normalerweise ein Temperaturfeld t(i allein aus tErdsohle und einem Temperaturgradienten von 0,03 K/m kre Soll eine bereits erfolgte Simulation mit gleichen oder veränderten Rand gungen fortgesetzt werden, dann kann das zuletzt ermittelte Temperatur tk), das stets automatisch unter Speicherfeld.dat gespeichert wird, wiede eingelesen werden und als Starttemperaturverteilung dienen. Der Pfad ist anzugeben und mit \ zu beenden. Da die Datei Speicherfeld.dat her vom Programm erzeugt wurde, ist sie auch komplikationslos einlesba						

• Eingabe zeitlich veränderlicher Flüssigkeitseintrittstemperaturen (Bild 3.2)

Die Maske 2 ist nur auszufüllen, wenn ein zeitabhängiger Verlauf der Flüssigkeitstemperatur berücksichtigt werden soll (Tfix in Maske 1 ist "blank") und außerdem die Anpassung der Simulation an die vorgegebene Eintrittstemperatur gebunden ist (Anpass = 1).

Flüssigkeitseintrittstemperatur							
FT(Monat, Tagesstunde)	°C	Für jeden Monat wird ein repräsentativer Tag mit Stundenwerten gefüllt. Diese Werte gelten während der gesamten Stunde (Intervall = 1 bis Intervall _{max} nach [1], Bild 6.3; es erfolgt keine Interpolation). Weiterhin gilt der Mustertag für den gesamten Monat.					

Bild 3.2 Eingabeoberfläche für die Flüssigkeitseintrittstemperatur (Maske 2)

Das Ausfüllen der Oberfläche kann in eine leere Maske erfolgen, oder aber vorhandene Daten des Beispiels können überschrieben werden. Für die Stunden, in denen der Sondendurchfluss erfolgt, muss bei Anpass = 1 auch die Flüssigkeitseintrittstemperatur bekannt sein. Stundeneingaben während des Sondenstillstandes werden ignoriert, der besseren Übersicht wegen, sollten die Felder "blank" sein. Die Datenspeicherung erfolgt in der Datei ZVERLAUFT.dat.

• Eingabe zeitlich veränderlicher Sondenleistungen (Bild 3.3)

Die Maske 3 ist nur auszufüllen, wenn ein zeitabhängiger Verlauf der Sondenleistung zu beachten ist (Qfix in Maske 1 ist "blank") und außerdem die Anpassung der Simulation an die vorgegebene Sondenleistung gebunden ist (Anpass = 2).

Sondenleistung							
FQ(Monat, Tagesstunde)	W	Für jeden Monat wird ein repräsentativer Tag mit Stundenwerten gefüllt. Diese Werte gelten während der gesamten Stunde (Intervall = 1 bis Intervall _{max} nach [1], Bild 6.3; es erfolgt keine Interpolation). Weiterhin gilt der Mustertag für den gesamten Monat.					

Bild 3.3 Eingabeoberfläche für die geforderte Sondenleistung (Maske 3)

Das Ausfüllen der Oberfläche kann in eine leere Maske erfolgen, oder aber vorhandene Daten des Beispiels können überschrieben werden. Für die Stunden, in denen der Sondendurchfluss erfolgt, muss bei Anpass = 2 die Sondenleistung bekannt sein. Stundeneingaben während des Sondenstillstandes werden ignoriert, der besseren Übersicht wegen, sollten die Felder "blank" sein. Die Datenspeicherung erfolgt in der Datei ZVERLAUFQ.dat.

• Eingabe zeitlich veränderlichen Durchflusses (Bild 3.4)

Die Maske 4 ist nur auszufüllen, wenn ein zeitabhängiger Verlauf des Sondendurchflusses bzw. Stillstandszeiten auftreten (Vfix in Maske 1 ist "blank").

Sondendurchfluss								
FV(Monat, Tagesstunde)	l/h	Für jeden Monat wird ein repräsentativer Tag mit Stundenwerten gefüllt. Diese Werte gelten während der gesamten Stunde (Intervall = 1 bis Intervall _{max} nach [1], Bild 6.3; es erfolgt keine Interpolation). Weiterhin gilt der Mustertag für den gesamten Monat. Bei vorhandenem Sondendurchfluss sollte eine Geschwindigkeit im Kernrohr und Ringspalt von 0,2 1,5 m/s garantiert werden.						

Das Ausfüllen der Oberfläche kann in eine leere Maske erfolgen, oder aber vorhandene Daten des

Beispiels können überschrieben werden. Die mit einem Wert belegten Stunden kennzeichnen den Sondenbetrieb. Sind Felder "blank", so erfolgt kein Sondendurchfluss. Die Simulation beschränkt sich dann nur auf den instationären Wärmetransport im Erdreich. Die Datenspeicherung erfolgt in der Datei ZVERLAUFV.dat.

Wäre Vfix $\neq 0$, so würde sich die Sonde im Dauerbetrieb befinden.

Bild 3.4 Eingabeoberfläche für den Sondendurchfluss (Maske 4)

• Ausgaben (Druck- und Diagrammarten)

Die Zusammenstellungen der Eingabewerte sowie der Ergebnisse werden als MS WORD-Dateien angezeigt. Sie können individuell geändert, gespeichert und ausgedruckt werden. Die Ausgaben sind selbsterklärend und anhand der Testbeispiele ersichtlich. Zusätzlich ist eine umfangreiche Grafikausgabe möglich. Angaben finden sich im Hauptbericht [1], Abschnitt 6.4 (S. 52 ff.)

4 Programminstallation und Hinweise zu Programmänderungen

Das Rechenprogramm "KOAXIALERDWÄRMESONDE" steht mit einem Beispiel zum kostenlosen Download bereit. Aus dem Programmlisting sind alle Module – gut strukturiert und mit zahlreichen Kommentaren versehen – ersichtlich, sodass eine Einarbeitung rasch möglich ist. Die Programmierung erfolgte in sehr einfacher Form, Anregungen zu eigenen Verbesserungen sind vielfach offensichtlich.

Erfolgt die Programmabarbeitung in der Programmierumgebung MICROSOFT VISUALBASIC.NET STANDARD, sind mögliche Fehlbedienungen und/oder noch vorhandene Programmfehler durch Nutzung des Debuggers relativ leicht auffindbar.

Auf jegliche Spezialsoftware, die einige wesentliche Programmiererleichterungen – beispielsweise bei der Erzeugung von Ausgabetabellen – bewirkt hätte, wurde bewusst verzichtet. Es werden lediglich Verbindungen zu MICROSOFT WORD hergestellt.

• Grundlagen für die Programmanwendung

Voraussetzung für die Programmnutzung sind die Betriebssysteme:

Microsoft Windows 2000 Professional mit Service Pack 4 oder

Microsoft Windows XP mit Service Pack 1.

Für beide Betriebssysteme werden zur Abarbeitung der vorliegenden Programme zusätzlich maximal zwei Dateien benötigt, die man unter <u>http://www.microsoft.com/germany/default.aspx</u> kostenlos downloaden kann.

1. Datei: Microsoft® .NET Framework V	ersion 1.1 R	Redistributable Package
---------------------------------------	--------------	-------------------------

Quickinfo	Dateiname:	dotnetfx.exe
	Downloadgröße:	23709 КВ
	Veröffentlichungsdatum:	22.05.2003
	Version:	1.1 bzw. 1.1.4322
Die Datei findet 1	nan z. B. unter dem Suchbegriff: Net Fra	umework

2. Datei: Sprachpaket Deutsch für Microsoft® .NET Framework Version 1.1

Quickinfo	Dateiname:	langpack.exe							
	Downloadgröße:	1408 KB							
	Veröffentlichungsdatum:	21.05.2003							
	Version:	1.1							
Die Datei findet man z. B. unter dem Suchbegriff: Net Sprachpaket									

Das Sprachpaket enthält deutsche Texte, z. B. Fehlermeldungen.

• Laden und Start des Rechenprogramms

Die Datei steht in dem übergebenen Ordner "Koaxialsonde". Sie ist in ein eigenes Verzeichnis auf die Festplatte zu kopieren. Im genannten Ordner sind das Rechenprogramm und ein Simulationsbeispiel enthalten. Die entsprechenden Unterordner tragen die Namen:

- KOAXIALERDWÄRMESONDE (Simulationsmodell für konzentrische Erdwärmesonden)
- Beispiel_Koax_1 (Simulationsbeispiel für eine Erdwärmesonde gemäß Seite 19 ff., Rechenzeit

ca. 6 min) {Im Ordner "Beispiel_Koax_1" steht auch die Datei für die Sonnenlufttemperatur tSL.dat. Sie erscheint in der Hauptbedienoberfläche z. B. als

F:\Koaxialsonde\Beispiel_Koax_1\tSL.dat.

Der blaue Teil des Pfades ist den realen Gegebenheiten des benutzten Computers anzupassen.}

Die Programmabarbeitung kann generell auf zweierlei Weise erfolgen.

I. Beispielhafte Abarbeitung ohne Entwicklungsumgebung:

Ordner "KOAXIALERDWÄRMESONDE" öffnen \Rightarrow Datei "bin" öffnen

 \Rightarrow "Programm.exe" Doppelklick

II. Beispielhafte Abarbeitung mit Entwicklungsumgebung:

Visual Basic.NET starten \Rightarrow Menüleiste "Datei" \Rightarrow "Öffnen" \Rightarrow "Projekt" Einfachklick

 \Rightarrow Ordner "KOAXIALERDWÄRMESONDE" auswählen \Rightarrow "Programm.sin" Doppelklick

 \Rightarrow Menüleiste "Debuggen" Einfachklick \Rightarrow "Starten" Einfachklick

Zu Beginn wird in einem Fenster ([1], Bild 6.5) ein Pfad für das zu bearbeitende Beispiel angegeben. Dieser Vorschlag ist in der Regel mit dem selbst gewählten Pfad zu überschreiben!

• Bearbeitung des Programmlistings

Im Ordner "KOAXIALERDWÄRMESONDE" sind alle Dateien mit den Quellcodes (Formen) enthalten. Die Auswahl der Formen kann mit Hilfe des Projektmappen-Explorers vorgenommen werden.

- Gliederung des Rechenprogramms

Form1.vb	Hauptprogramm mit Haupteingabe, Ablaufsteuerung, Ergebnisdruck und Steuerung weiterer Druck- und Grafikausgaben
Form2.vb	Eingabe des Zeitverlaufes "Flüssigkeitseintrittstemperatur" mit Kontrolldruck
Form3.vb	Anzeige zum Simulationsstand in Stunden während der Berechnung
Form4.vb	Eingabe des Zeitverlaufes "Sondenleistung" mit Kontrolldruck
Form5.vb	Eingabe des Zeitverlaufes "Flüssigkeitsdurchfluss" mit Kontrolldruck
Form6.vb	Druck des Temperatur- und Phasenfeldes
Form7.vb	Grafik der Betriebsverläufe längs der Sonde
Form8.vb	Grafik der Betriebsverläufe der Sonde und des Sondenumfeldes über die Simulationszeit

5 Beispiele

Bezüglich der Erdreichmodellierung, der thermischen Randbedingungen und der wärmetechnischen Sondenbelastungen gelten die in [1], Abschnitt 8.1 (S. 59 ff.) getroffenen Festlegungen.

5.1 Alleinige Heizwärmenutzung beim Sondenbetrieb (Beispiel_Koax_1)

Das Beispiel wird anhand der folgenden Bilder, Bildunterschriften und Zwischentexten erläutert.

Koaxialerdwärmesonde - Hauptprogramm											
Sondensimulation für konzentrische Rohran	ordnung (Sond	lervaria	nte)	F	SD\FE 1	GA\Erdwärmesond	en\Beispiel	Koax 1\			
Autor: Prof. DrIng. habil. Bernd Glück (V1/2008)				Ĺ							
Erdoberfläche Bohrloch mit Rohren Hauptgeometriedat	en	Schichtda	ten und Bo	hrlochfül	Ilmaterial						
Schicht i = 1 Bohrlochradius	rBL 0,075 m	Schicht	Rho kg/m ³	Laı W/	mbda (m K)	c J/(kg K)	rS kJ/kg	TSch m	Lambda Füllstoff		
	de 100 m			fest	flüssig	fest flüssig			W/(m K)		
		Sch = 1	2400	2,6	2,6	900 900	0	120	1		
Shinkle	rohr e	Sch = 2	0	0	0	0 0	0	0	0		
	nr o										
anulation and a second and as second and a		Sch = 3	0	0	0	0 0	0	0	0		
		Sch = 4	0	0	0	0 0	0	0	0		
Kemrohr											
		Sch = 5	0	0	0	0 0	0	0	0		
Schicht Sch = Schmax	Sim 120 m	Sch = 6	0	0	0	0 0	0	0	0		
Sohle des in in Simulationsgebietes	nax 120										
Durchmesser des	rEB 10 m	Sch = 7	0	0	0	0 0	0	0	0		
2 r _{EB} kr	max 10	Sch = 8	0	0	0	0 0	0	0	0		
Rohr- und Sondendaten					Daten z	um Simulationsabl	auf				
Hüllrohr: Bohraussendurchmesser 75 mm Wanddicke	6.8 mm Wärmele	itfähigkeit	0.35 W	//(m K)	Beginn Maxima	der Simulation: 1 de Anzahl der Simi	lanuar, 1. S ilationsstun	itunde) den	87600		
	0,0	in an gront f	0,00	.(Kanada						
Rohraussendurchmesser 50 mm Wanddicke	4,6 mm Wärmele	itfähigkeit	0,35 W	//(m K)	Evtl. La	iden der Sonnenluft	emperatur temperatur	 (Pfad + I	Datei):		
Dämmung: Dicke	0 mm Wärmele	itfähigkeit	1 W	/(m K)	F:\SD\F	E_TGA\Erdwärme	sonden\Beis	spiel_Koa	ax_1\tSL		
Durah filmana di unitari C. Tufapar I. 40 %	Tufacar I 25 %				Unbeeir	nflusste Sohlentem	peratur	Г	12 °C		
Eintrittetemperatur	W Volum	apetrom			Evtl. Ei	ngabe der Erdreich	temperatury	verteilung	3		
Die Angaben gelten für die gesamte Simulationszeit. Sind diese Felder "ble	ank", dann ist die Eingab	e unter ZEITV	ERLAUF		einer vo	orhandenen Simula	ion (Pfad m	nit \ been	den):		
vorzunehmen. Die Leistung und der Volumenstrom beziehen sich auf die k	complette Sonde.				Bei Einga	abe von "blank" wird di	e vertikale Te	mperaturv	ertei-		
Die Simulationsannassung soll die gewünschte 4 C Eintritter	temperatur oder (•	Leistung	sichers	tellen	lung für a mit der T	alle i ausgehend von d emperaturreduzierung	von 0,03 K/n	peratur be n nach obe	i imax en		
		Leistung	sichers	tenen.	ermittelt.	t(i, k) gilt fur alle Kreis	ringe k.				
Abläufe: 1. STARTEN drücken und Pfad 3. Bei Eingabe oder Korr bestätigen hzw. neu eingebend Wette bitte nur Zehlen k	rektur der 5. Übe	r ZEITVERLÄ	UFE Eintrittst	tempera-							
2. Daten aus DATEI LADEN Minuszeichen oder "Blar	nk" verwenden! Durchf	luss eingeben									
oder Neueingabe vornehmen! 4. EINGABESPEICHER Es erfolgt eine Grobkont	oder Neueingabe vornehmen! 4. EINGABESPEICHERVING drucken! 6. BERECHNUNG, DRUCK, TABELLE Es erfolgt eine Grobkontrolle. oder DIAGRAMM drücken!										
STARTEN DATEI LADEN EINGABESPEICHERUN	G BERECH	NUNG	Ergeb-		DRUCK	DIAGR	MM-SOND	E			
Zeitverläufe > DURCHFLUSS EINTRITTSTEMPERATU	JR SONDENLE	STUNG	nisse >	T-/P	hase-TAB	ELLE DIAGRA	MM-UMFEL	.D E	EENDEN		

Bild 5.1 Hauptoberfläche (Maske 1) mit den Eingabedaten für Beispiel_Koax_1

Die Eingabedaten sind im Abschnitt 3 erläutert, Aussagen zu speziellen hier angenommenen Werten finden sich in [1], Abschnitt 8.1 (S. 59 ff.). Der Ordner "Beispiel_Koax_1" ist vor dem Programmstart anzulegen. In diesem Fall wurde die Datei mit den Daten der stündlichen Sonnenlufttemperatur "tSL.dat" in den Ordner-"Beispiel_Koax_1" kopiert. Sie könnte aber auch an anderer Stelle stehen, wobei sie entsprechend zu benennen wäre.

- Die Sonnenlufttemperatur ist aus der Außenlufttemperatur und der Globalstrahlung f
 ür Kassel nach TRY 07 ermittelt.
- Die Simulationszeit erstreckt sich über 10 Jahre. Die Rechenzeit beträgt mit einem üblichen PC etwa 6 Minuten.
- Die Betriebszeiten der Sonde entsprechen [1], Tabelle 8.2 (S. 61). Sie finden sich in den Masken der Bilder 5.2 und 5.3 wieder.

 Als Wärmeträger wird eine wässrige 25 %-ige Tyfocorlösung verwendet, da Temperaturen unter 0 °C erwartet werden. Die Wärmeübergangskoeffizienten sind kleiner als bei reinem Wasser.

Eing	abe:	Durc	hflu	SS																			_	
Flüss	sigke	eitsdu	ırchf	luss	in l/h											Pfa	d und v	vorhar	ndener	bzw. z	zukünft	iger D	ateinar	ne:
											Ta	gesstu	inde		F:\SD\F	E_TG/	\\Erdwä	rmeso	nden\Be	eispiel_	Koax_1\	ZVERI	.AUFV.d	lat
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Januar					2000	2000	2000		2000		2000		2000		2000		2000		2000	2000	2000		2000	
Februa	r				2000	2000	2000		2000		2000		2000		2000		2000		2000		2000		2000	
– März -						2000	2000		2000		2000				2000		2000		2000		2000		2000	
- April							2000		2000		2000						2000		2000		2000			
- Mai							2000												2000					
– Juni –																								
-Juli —																								
-August																								
Septen	nber –						2000																	
Oktobe	er ——						2000		2000								2000		2000		2000			
Novem	ber —					2000	2000		2000		2000				2000		2000		2000		2000		2000	
Dezem	ber —				2000	2000	2000		2000		2000		2000		2000		2000		2000		2000		2000	
ANZEIGE DATENS Evtl. KON	EN drücken! Daten überschreiben (nur Zahlen, Komma, Minuszeichen)! MASKE LEEREN DAT														ANZE	GEN ERUNC		KONT	ROLL	DRUCI	<	BEEN	IDEN	

Bild 5.2 Eingabeoberfläche (Maske 4) mit den zeitabhängigen Sondendurchsätzen für Beispiel_Koax_1

 Der nachfolgende Kontrollausdruck gibt das monatlich unterschiedliche Betriebsstundenschema von [1], Tabelle 8.2 (S. 61) richtig wieder.

OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\ERDWÄRMESONDEN\BEISPIEL_KOAX_1\ Monatliche Verläufe des Flüssigkeitsdurchflusses in l/h

1	2	3	4	5	6	7	8	9	10	11	Tagess 12	tunde 13	14	15	16	17	18	19	20	21	22	23	24
Januar				2000	2000	2000		2000		2000		2000		2000		2000		2000	2000	2000		2000	
Februar				2000	2000	2000		2000		2000		2000		2000		2000		2000	2000	2000		2000	
März				2000	2000	2000		2000		2000		2000		2000		2000		2000		2000		2000	
April					2000	2000		2000		2000				2000		2000		2000		2000		2000	
Mai						2000		2000		2000						2000		2000		2000			
						2000												2000					
Juni																							
Juli																							
August																							
September	r					2000																	
Oktober						2000																	
November						2000		2000								2000		2000		2000			
Dezember					2000	2000		2000		2000				2000		2000		2000		2000		2000	
				2000	2000	2000		2000		2000		2000		2000		2000		2000		2000		2000	

Eing 📕	abe:	Song	lenle	istun	g																		_	
Gefo	rder	te So	nden	leist	ung in	w										Pfa	ad und	vorha	ndener	bzw. z	zukünft	iger D	ateinan	ne:
											Та	gesstu	nde		F:\SD\F	E_TG	A\Erdwä	rmeso	nden\Be	ispiel_l	Koax_1	ZVERL	AUFQ.d	Jat
Januar	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
					3500	3500	3500		3500		3500		3500		3500		3500		3500	3500	3500		3500	
Februa	ir —																							
					3500	3500	3500		3500		3500		3500		3500		3500		3500		3500		3500	
- März	_																							
						3500	3500		3500		3500				3500		3500		3500		3500		3500	
April —	_						3500		3500		3500						3500		3500		3500			
	1						0000		0000		0000			1			0000		0000		0000			
-Mai							3500												3500					
- Juni -																								
Juli																								
-Juli																								
August																								
Septen	nber -						2500		_								_							
							300																	
Oktobe	»r ——	1					3500		3500					_			3500		3500		3500			
Never			,	,		,						,							,	,				
Novem						3500	3500		3500		3500				3500		3500		3500		3500		3500	
Dezem	ıber –																							
					3500	3500	3500		3500		3500		3500		3500		3500		3500		3500		3500	
													DATEN	ANZE	IGEN									
DATENS Evtl. KOI			3 drücke Kerzeu	igen!	eiden (n	비즈레	en, kom	iiid, ivii	nuszeic	nen):		LEEF	REN	DA	TENSF	PEICH	ERUN	3	KONT	ROLL	DRUC	к	BEEN	IDEN

Bild 5.3 Eingabeoberfläche (Maske 3) mit den geforderten Stundenleistungen der Sonde für Beispiel_Koax_1

 Der Kontrollausdruck entspricht wiederum dem monatlich unterschiedlichen Betriebsstundenschema nach [1], Tabelle 8.2 (S. 61).

OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\ERDWÄRMESONDEN\BEISPIEL_KOAX_1\ Monatliche Verläufe der geforderten Sondenleistung in W

											Tagess	tunde											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Januar				3500	3500	3500		3500		3500		3500		3500		3500		3500	3500	3500		3500	
Februar				5500	5500	5566		5555		0000		5566		2000		5500		5500	5566	5500		5500	
Mäxa				3500	3500	3500		3500		3500		3500		3500		3500		3500		3500		3500	
April					3500	3500		3500		3500				3500		3500		3500		3500		3500	
Whitt						3500		3500		3500						3500		3500		3500			
Mai						25.0.0												2500					
Juni						3500												3300					
Juli																							
August																							
Septembe	r																						
						3500																	
Oktober						3500		3500								3500		3500		3500			
November					3500	3500		3500		3500				3500		3500		3500		3500		3500	
Dezember																							
				3500	3500	3500		3500		3500		3500		3500		3500		3500		3500		3500	

Ergebnisausdrucke und Grafiken des Beispiels OBJEKTBEZEICHNUNG: F:\SD\FE_TGA\ERDWÄRMESONDEN\BEISPIEL_KOAX_1\

Rohr-	und Bo	hrlochd	daten:					—
rBL	dHa	delH	lamH	dKa	delK	lamK	delD	lamD
mm	mm	mm	W/(mK)	mm	mm	W/(mK)	mm	W/(mK)
75	75	6,8	0,35	50	4,6	0,35	0,0	1,00

Schicht	Dichte	Wärmele	itfähigkeit	Wärmel	kapazität	Schmelz-	Schicht-	Wärmeleitfähigkeit
		fest	flüssig	fest	flüssig	wärme	tiefe	Bohrlochfüllung
	kg/m³	W,	/(mK)	J/	(kgK)	kJ/(kg)	m	W/(mK)
1	2400	2,60	2,60	900	900	0,0	120,0	1,00
2	0	0,00	0,00	0	0	0,0	0,0	0,00
3	0	0,00	0,00	0	0	0,0	0,0	0,00
4	0	0,00	0,00	0	0	0,0	0,0	0,00
5	0	0,00	0,00	0	0	0,0	0,0	0,00
6	0	0,00	0,00	0	0	0,0	0,0	0,00
7	0	0,00	0,00	0	0	0,0	0,0	0,00
8	0	0,00	0,00	0	0	0,0	0,0	0,00

Sondenläng	je Abschni	tte Flüssigkeit	Eintritts- temperatur	Sonden- leistung W	Durchiluss 1/h	lm Kernrohr fließt:
100,0	100	Tyfocor L25		Z-funk.	Z-funk.	Rücklauf
Es erfolgt	die Anpassung	an die vorgegebene	e Sondenleistung	!	Zeitschrittwe	eite: <mark>600 s</mark>

Daten zum Simulationsgebiet und zur Simulationszeit:_____ Tiefe Radius imax kmax Oberflächentemperatur Erdsohlentemperatur Simulationszeit

m m °C °C h

120,0	10,0	120	10	12,0	87600

Datei Sonnenlufttemperatur: F:\SD\FE_TGA\Erdwärmesonden\Beispiel_Koax_1\tSL.dat Datei Erdreichtemperaturverteilung früherer Simulation:

Werte des letzten Simulationszyklus bei Sondendurchfluss Letztes Intervall der Simulationsstunde: 87599

i	tV(i)	tR(i)	tBL(i)	QV(i)	QR(i)
	°C	°C	°C	W	W
1	-7,3	-5,7	-0,2	38,3	-6,7
11	-7,1	-5,7	2,0	46,2	-6,0
21	-6,9	-5,6	1,1	40,7	-5,2
31	-6,7	-5,6	0,9	38,2	-4,6
41	-6,5	-5,6	0,8	36,6	-3,9
51	-6,3	-5,6	0,9	35,6	-3,3
61	-6,2	-5,6	1,1	35,1	-2,6
71	-6,0	-5,6	1,4	35,0	-2,0
81	-5,9	-5,6	1,8	35,2	-1,3
91	-5,7	-5,5	2,3	36,1	-0,7

Wä	rmeaufnahm	e	Temperaturspreizung
Vorlauf	Rücklauf	Gesamt	
W	W	W	K
3803	-332	3471	1,6

Monatswerte

Simulations- jahr	Monat	Sonnenwärme kWh	Erdwärme kWh	Sondenarbeit kWh	
1	1	-2735	18	1294	
1	2	-439	16	1071	
1	3	363	18	977	

Simulation jahr	ns- Monat Sc	nnenwärme kWh	:	Erdwärme So: kWh	ndenarbei kWh	t			
1		1446		1.0	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
1	4	1446		10	634 210				
1	5	2411		18	210				
1	07	2411		10	0				
1	8	1/11		1.0	0				
1	9	_931		1.8	105				
1	10	-931 -1144		10	10J				
1	11	-2206		1.8	229				
1	12	-1947		18	1186				
Ŧ	I2 Jahrossummon•	1136		215	6962	Bilanz.	-5612	とWb	
	Speicherzustand	IIJU am Ende	doe	Jahres bezogen	0902	°C.	451281	kwii kwb	
2	1	_1885	ues	18	1294	с.	401201	V.MII	
2	2	-377		16	1074				
2	2	3/3		18	980				
2	4	1406		18	634				Kontrolle:
2	-	3254		19	218				451281 kWh
2	6	2369		19	210				4J1201 KWII
2	7	1567		20	0				-5021 kWh
2	, 8	1375		20	0			=	446260 kWh
2	0	-962		20	105				
2	9	- 902		20	10J				
2	10	-11/3		21	539				
2	11	-2230		20	939				
2	12 To have a summer of	-1969		21	1180	Dilener	E 0 0 1	1-1-1	
	Janressummen:	1/18	.1	230	6970	BILANZ:	-5021	K.WI1	
2	Speicherzustand	am Ende	des	Jahres bezogen	auf -10	С:	446266	ĸwn	<──
3	Ţ	-1904		22	1294				
•	1.0	1070		26	1100				
3	12	-19/3		26	1186	D'1	F 0 0 7	1 7.71.	
	Janressummen:	1593	.1	280	6970	Bilanz:	-5097	KWN	
4	speicherzustand	1 am Ende	des	Janres bezogen	au1 =10	ι:	4411/2	K.W11	
4	T	-1908		26	1295				
•	1.0	1070		21	1100				
4	12 To have a summer of	-1972		31	1180	Dilener	FOFO	1-1-1	
	Janressummen:	1380 Lam Enda	-)	J41 Tehuse hereven	6970	PILANZ:	-5050	K.WII	
E	speicherzustand		des	Janres bezogen	au1 -10	ι:	436124	K.W11	
5	Ţ	-1906		32	1294				
•	1.0	1060		27	1106				
5	12 Tahroagummon	-1909		37	1100	Dilonge	1052	l-Mb	
	Janressummen:	1000	-)	400	6966 auf 10	PILANZ:	-4955	K.WI1	
G	spercherzustand		ues	Jaires Dezogen	au1 =10	C:	4311/4	KWII	
0	T	-1903		50	1294				
•	1.2	-1965		13	1196				
0	Tahroggummon:	1651		45	6967	Pilang.	_1011	l-Mb	
	Speicherzustand	1001 am Ende	doe	Tahres bezogen	auf =10	°C.	126333	kwh	
7	1	_1898	ues	A3	129/	с.	420333	V.MII	
1	T	1000		45	1294				
• 7	12	-1960		48	1186				
/	Tabressummen.	1705		537	6967	Bilanz.	-4726	とWb	
	Speicherzustand	1,00 am Ende	doe	Jahres bezogen	auf =10	°C.	121608	kwh	
8	1	_1893	ues	10 10	129/	с.	421000	V.MII	
0	T	1000		4.5	1294				
•	12	-1955		54	1186				
0	Tahroggummon:	1762		602	6967	Pilang.	-1603	l-Wb	
	Spojeborgustand	1702	dog	Tahrog hogogon	0.907	°C.	417004	kWII	
0	spercherzustand	_1000	ues	51	1201	с.	41/004	V. MII	
2	Ť	T000		74	エムジキ				
•	12	-1950		59	1186				
9	Ta hara a summana a	-1930		55	1100	Dilener	4400	1-7-71-	
	Spoighorgusts		do -	Tobrog berger	090/ 015 10	°C.	-440Z	K.W11	
1.0	opercherzustanc	_1000	ues	50	aur -10	0:	412324	KW[]	
τu	Ť	-1003		22	1294				
•	10	-19/5		64	1196				
τv	Jahressummen.	1983		724	6967	Bilanz·	-4361	kwb	
	Speicherzuetand	am Endo	dee	Jahres bezogen	auf _10	°C•	408167	kwh	
	SPETCHET 203 CALL		ues	Janires Dezoyell	au1 -10	. .	-0010/	V AA 11	

- Der Bilanzwert (Wärmezufuhr von der Erdoberfläche und von der Sohle des Simulationsgebietes minus Sondenarbeit) nimmt jährlich ab, ist nach zehn Jahren aber noch deutlich negativ. D. h., das Erdreich im Simulationsgebiet erfährt noch eine kräftige Entspeicherung.
- Die jährliche Sondenarbeit schwankt zwischen 6962 kWh und 6970 kWh. Damit beträgt die

mittlere Sondenleistung 3486... 3490 W. Die programminterne "Leistungsregelung" arbeitet somit sehr gut, die geforderten 3500 W werden um weniger als 0,5 % unterschritten.

- Nach 10 Jahren beträgt die Herkunft der Erdwärmesondenarbeit:
 - 63 % durch Erdreichabkühlung
 10 % durch Wärmezufluss vom Erdinneren
 27 % durch Wärmezufluss von der Erdoberfläche.

OBJEKTBEZEICHNUNG: F:\SD\FE TGA\ERDWÄRMESONDEN\BEISPIEL KOAX 1\FEB2.DAT

Temperaturen: Vorlauf tV, Rücklauf tR, Bohrlochwand tBL; Erdreich k = 1 ... 10 in °C zur Zeit 10175 Stunden

i	tV	tR	tBL	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
1	-5,60	-4,03	-0,63	2,10	2,50	2,63	2,69	2,72	2,74	2,75	2,76	2,76	2,77
2	-5,58	-4,03	0,13	3,29	3,92	4,16	4,29	4,37	4,41	4,44	4,46	4,47	4,48
3	-5,57	-4,02	0,72	4,20	4,95	5,27	5,45	5,56	5,63	5,68	5,70	5,72	5,73
4	-5,55	-4,02	1,29	5,07	5,92	6,29	6,50	6,64	6,73	6,79	6,83	6,85	6,86
5	-5,53	-4,01	1,80	5,86	6,77	7,18	7,42	7,58	7,68	7,75	7,79	7,82	7,83
50	-4,71	-3,89	3,10	7,42	8,39	8,84	9,12	9,30	9,42	9,50	9,55	9,58	9,59
99	-3,87	-3,84	4,58	9,24	10,21	10,60	10,82	10,96	11,05	11,11	11,14	11,17	11,17
100	-3,86	-3,84	4,83	9,62	10,44	10,76	10,93	11,04	11,12	11,17	11,20	11,21	11,22
Ende	der :	Sonde											
101	-	-	-	10,50	10,76	10,93	11,05	11,13	11,19	11,22	11,25	11,26	11,27
102	-	-	-	10,90	11,00	11,09	11,16	11,21	11,25	11,28	11,30	11,31	11,32
103	-	-	-	11,13	11,17	11,21	11,25	11,29	11,32	11,34	11,35	11,36	11,36
				, .		,	, .	, -			,		,
119	-	-	-	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95
120	-	-	-	11,98	11,98	11,98	11,98	11,98	11,98	11,98	11,98	11,99	11.99
				,	,	,	,	,	,	,	,	,	,

OBJEKTBEZEICHNUNG: $F:\SD\FE_TGA\ERDWÄRMESONDEN\BEISPIEL_KOAX_1\FEB10.DAT$ Temperaturen: Vorlauf tV, Rücklauf tR, Bohrlochwand tBL; Erdreich k = 1 ... 10 in °C zur Zeit 80255 Stunden

i	tV	tR	tBL	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10	
1	7 5 4	- O C	1 41	1 00	0.46	0.00	0.67	0.71	0.70	0.75	0.76	0.76	0.76	_
1	-/,54	-5,96	-1,41	1,98	2,40	2,60	2,67	2,11	2,13	2,15	2,70	2,70	2,/6	
2	-7,52	-5,96	-0,69	3,08	3,82	4,11	4,26	4,34	4,40	4,43	4,46	4,47	4,47	
3	-7,51	-5,96	-0,12	3,95	4,82	5,19	5,40	5,52	5,61	5,66	5,69	5,71	5,72	
4	-7,49	-5,96	0,43	4,79	5,76	6,19	6,44	6,59	6,70	6,76	6,80	6,83	6,84	
5	-7,47	-5,95	0,92	5,56	6,59	7,06	7,34	7,51	7,63	7,71	7,75	7,78	7,79	
50	-6,65	-5,86	0,78	4,88	5,81	6,23	6,49	6,66	6,78	6,85	6,90	6,93	6,94	
99	-5,85	-5,82	2,85	7,66	8,64	9,05	9,27	9,41	9,51	9,56	9,60	9,62	9,63	
100	-5,84	-5,82	3,15	8,11	8,95	9,27	9,46	9,57	9,64	9,69	9,72	9,74	9,75	
Ende	e der :	Sonde												
101	-	-	-	9,08	9,35	9,52	9,65	9,73	9,79	9,82	9,85	9,86	9,87	
102	-	-	-	9,57	9,66	9,76	9,83	9,89	9,93	9,96	9,97	9,99	9,99	
103	-	-	-	9,87	9,91	9,96	10,00	10,04	10,07	10,09	10,10	10,11	10,11	
119	-	-	-	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	11,85	
120	-	-	-	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95	11,95	

- Die Temperaturverteilung im Erdreich im Abstand von 8 Jahren zeigt die deutliche Abkühlung im mittleren und unteren Sondenbereich beispielsweise um 1,5 ... 2,5 K.
- An der Sohle des Simulationsgebietes steigt der Temperaturgradient von 0,03 K/m auf 0,10 K/m an. Obwohl sich der Anstieg des Gradienten stark erhöht und die Frage nach der Richtigkeit der Randbedingung einer konstanten Temperatur an der Sohle des Simulationsgebietes aufwirft, sei auf die Kleinheit des vertikalen Wärmestromes von 0,26 W/m² verwiesen.

Aussagen zu Bild 5.4:

- Deutlich zeigt sich die Temperaturabsenkung innerhalb von 8 Betriebsjahren. So sinkt die mittlere Soletemperatur um etwa 2 K.
- Die vertikale Verteilung der Bohrlochwandtemperatur zeigt zunehmend den Einfluss der Wärmeströme von oben und unten ins Simulationsgebiet.
- Dies spiegelt sich auch in den Verläufen der abschnittsweisen Wärmestromaufnahme wider, wobei die Sondenleistung konstant bleibt.

5 Beispiele

Bild 5.4 Ausgewählte Betriebsverläufe (Ende Februar des 2. und 10. Simulationsjahres) über die Sondentiefe

- Die sommerlichen Betriebspausen sind deutlich zu erkennen. Mit Beginn der Heizperiode sinken die Sole- und Bohrlochwandtemperaturen stark ab, im Frühjahr steigen sie aufgrund der verringerten Anforderung wieder etwas an. Eine offensichtliche Erholung tritt in der Sommerpause ein, da Wärme zur unmittelbaren Sondenumgebung fließt.
- Die dargestellten Bohrlochwandtemperaturen während der Betriebspausen sind unreal. Entsprechend Abschnitt 3 (S. 10) bleiben sie bei intermittierendem Sondenbetrieb während der Pausen unverändert, um die "numerische Einschwingphase" zu verkürzen. Dies erwies sich auch als zweckdienlich. Nach der langen Sommerpause jeweils zu Beginn der Heizperiode ergibt sich jedoch eine erneute Einfahrkurve. Die Bohrlochwandtemperatur nimmt während der Sondenbetriebspausen keinen Einfluss auf die Erdreichtemperaturverteilung.
- Sehr gut zu erkennen ist das langfristige Absinken der Soletemperatur. Die Änderung nimmt mit zunehmender Zeit erwartungsgemäß ab, was auf einen asymptotischen Endwert schließen lässt.

Bild 5.6 Ausgewählte Erdreichtemperaturen im Verlaufe von 10 Simulationsjahren Bild oben: Abstand 1,6 m, Tiefen variiert; Bild unten: Tiefe ca. 30 m, Abstände variiert

- Der Temperaturverlauf am Punkt 5 (0,5 m unter der Erdoberfläche) zeigt den deutlichen Einfluss der Sonnenlufttemperatur im Jahresgang.
- Die darunter liegenden Punkte 6, 7 und 8 in ca. 30 m, 60 m und 90 m Tiefe weisen auch eine Schwingung im Jahresgang auf. Sie ist aber nicht durch die meteorologische Randbedingung an der Erdoberfläche verursacht, sondern durch den Jahresgang der abgeforderten Sondenleistung. Die Frequenz der Sonnenlufttemperaturschwingung und die gegebenen Stoffwerte des Erdreiches bewirken eine so starke Amplitudendämpfung, dass in den betrachteten Tiefen praktisch keine Temperaturschwingung mehr merkbar sein kann.
- Die Temperaturverläufe in der Tiefe von ca. 30 m, wobei die Punkte 6, 10, 14 und 18 mit den Sondenabständen von 1,6 m, 4,5 m, 6,5 m und 9,5 m betrachtet werden, zeigen mit zunehmendem Abstand eine Amplitudenreduzierung und eine Phasenverschiebung. Die Jahresschwingung ist eindeutig durch den Jahresgang der Sondenleistung geprägt.

Die mittlere Temperaturabnahme beträgt während der zehn Betriebsjahre ca. 2,5 K. Dabei wird die Senkung auch am Rand des Simulationsgebietes (Radius des Einflussbereiches 10 m) deutlich. Das angenommene Sondenfeld erfährt somit eine merkliche Abkühlung. Würde es sich um eine Einzelsonde handeln, so müsste der radiale Einflussbereich r_{EB} bei der Simulation spürbar vergrößert werden.

Betrie	ebsverläuf	e der Sonde (und d	es Son	denum	feldes i	iber di	e Simulat	onszeit	
Maßstabsän	derung > Gr	enzwertbestätigung	Orig	jinalmaßst	ab		Pfad	und Dateina	me: F:\SD\FE_TGA\Er	rdwärmesonden\Beispiel_Koax_1\
Leistung	 sverläufe		1				So	ndenleistung	- magenta	
			7				Wa	armestrom voi	n Erdsohle - blau	
L										
3500	and the second second	and the second		1 Manual Control	and a second	i n jedani tar	ii yay		an and a second s	i na analasia
w	=									
1750										
	_									
	_									
	_									
			2190	0			438	00	657	00 Simulationsstunden 87600
				Temperat	turverläuf	e *			Leistungsverläufe *	
Toilung dor	Sonde:	Abstand vom Boh	rloch >	Wand	1,6	4.5	6,5	9,5 m	Sondenleistung	Zum Starten CheckBoxen anklicken und darüber Simulationsstunde
Ordinate:	C Vorlauf	Erdreich:	0,5	Π 1	5	9	🗖 13	🗖 17	Wärmestrom Erdoberfläc	che befindlichen Button drucken! so wählen, dass eine gut lesbare
14	Rücklauf	Tiefe >	29,5	2	6	1 0	🗖 14	🗖 18	Värmestrom Erdsohle	* Funktion erst nach entsteht!
	Sonnen- lufttemp.	m Sonden- tiefe m	59,5	П 3	7	🗖 11	🗖 15	🗖 19		
	□ tSL	100,0	89,5	□ 4	8 🗆	□ 12	□ 16	D 20		BEENDEN

Bild 5.7 Sondenleistung und Wärmestrom an der Sohle des Simulationsgebietes in das Simulationsgebiet im Verlaufe von 10 Simulationsjahren

Bild 5.8 Sondenleistung, Wärmestrom an der Sohle des Simulationsgebietes und an der Erdoberfläche in das Simulationsgebiet im Verlaufe des letzten Simulationsjahres

- Die Sondenleistung entspricht während der Betriebszeit der Anforderung von 3500 W. Der Wärmestrom aus der Erdtiefe steigt ganz allmählich an, hat aber absolut gesehen nur geringen Anteil an der Wärmezufuhr ins Simulationsgebiet. Eine eventuelle Änderung der Randbedingung an der Sohle des Simulationsgebietes hätte keinen dominierenden Einfluss.
- Demgegenüber ist der Wärmestrom an der Erdoberfläche ins Simulationsgebiet beträchtlich.
 Somit muss die Randbedingung an der Erdoberfläche möglichst genau nachgebildet werden.

5.2 Variationen des Sondendurchlaufes und der Sondengestaltung am Beispiel_Koax_1

Um die Einflüsse der Parameteränderungen deutlich zu erkennen wird jeweils nur ein Parameter gegenüber dem Ursprungsbeispiel geändert. Die Ergebnisse zeigen die Bilder 5.9 bis 5.16. Als kennzeichnende Merkmale werden die mittlere Soletemperatur am Sondenkopf $t_{Sole,Mittel}$ und der Temperaturverlauf längs der Sonde am Ende der Simulationszeit von 10 Jahren (letzte Betriebsstunde am 31. Dezember) in den Bildern wiedergegeben.

Ursprungsbeispiel

Sondentiefe 100 m; Simulationstiefe 120 m; Radius des Einflussbereiches 10 m; Leistung 3500 W; Betriebsstunden 1997 h/a; Durchfluss 2000 l/h; Wärmeleitfähigkeit des Erdreiches 2,6 W/(m K); Rücklauf im Kernrohr; Hüllrohr aus Kunststoff 75×6,8; Kernrohr aus Kunststoff 50×4,6; Bohrlochdurchmesser 150 mm; Wärmeleitfähigkeit der Füllung 1 W/(m K); keine Dämmung der Sondenrohre

Merkmal:

• Die Temperaturabnahme im Rücklauf (Kernrohr) beträgt nur ca. 0,2 K, da bei den gewählten Parametern die Temperaturdifferenz zwischen Kernrohr und Ringspalt, die Übertragungsfläche und die Wärmeübergangskoeffizienten wegen laminarer Strömung klein sind.

Bild 5.9 Ursprungsbeispiel

Merkmale:

- Die Temperaturzunahme im Vorlauf (Kernrohr) ist wegen des geringen Wärmestromes vom Ringspalt zum Inneren des Kernrohres klein.
- Bei der betrachteten Konfiguration ist kein strömungsbedingter Unterschied feststellbar.

Bild 5.11 Variante 2 (obere Bohrlochdämmung)

- Der geringere Wärmeleitwiderstand der Hüllrohrwandung führt zu einer höheren Soletemperatur bei gleicher vorgegebener Nutzleistung der Sonde.
- Die Absenkung der Rücklauftemperatur im Kernrohr bleibt mit ca. 0,3 K wie bei den früheren Varianten gering, da der Wärmedurchgangswiderstand vom Ringspalt zum Kernrohr stark durch die relativ hohen Wärmeübergangswiderstände beeinflusst wird.

pe.

• Die mittlere Solentemperatur erhöht sich bei den angenommenen wärmetechnischen Bedingungen jedoch nur um 0,2 K gegenüber Variante 3.

Bild 5.14 Variante 5 (gute wärmetechnische Anbindung ans Erdreich durch Bohrlochfüllung mit hoher Wärmeleitfähigkeit)

Merkmal:

• Die verbesserte wärmetechnische Anbindung ans Erdreich, die hier durch einen kleineren Bohrlochdurchmesser erreicht wird, führt zu einer Erhöhung der mittleren Soletemperatur um 1,4 K. Es ist jedoch fraglich, ob ein so enger Ringspalt zwischen Bohrlochwand und Sondenhüllrohr einwandfrei verfüllbar ist. Luftspalte und/oder Lunker würden den Wärmeleitwiderstand extrem erhöhen und damit die mittlere Soletemperatur stark senken.

Bild 5.15 Variante 6 (gute wärmetechnische Anbindung ans Erdreich durch Verkleinerung des Bohrlochdurchmessers)

peratur erhöht sich lediglich um 0,1 K.

Bild 5.16 Variante 7 (doppelter Sondendurchsatz)

Die in den Bildern vorgestellten Ergebnisse gelten selbstverständlich nur unter den beschriebenen Randbedingungen der Simulation. Dennoch sind daraus Trends erkennbar. Für detaillierte und spezielle Aussagen bzw. Vergleiche ist das Simulationsprogramm zu nutzen.

Literatur

[1] GLÜCK, B.: Simulationsmodell "Erdwärmesonden". Kostenlos erhältlich unter: <u>http://www.berndglueck.de/Erdwaermesonde</u>

[2] GLÜCK, B.: Wärmeübertragung, Wärmeabgabe von Raumheizflächen und Rohren, 2. Auflage. Berlin: Verlag für Bauwesen 1990

[3] VDI-Wärmeatlas, 2. bis 9. Auflage. Düsseldorf: VDI-Verlag 1994 bis 2002